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Abstract—Intuitively, identification of nodes close to the net-
work edge is key to the successful setup, and continued operation,
of many sensor network protocols and applications. In a previous
study [1] we introduced local convex view (lcv) as a means to
identify nodes close to the network edge by computing the convex
hull of nodes within range. In this paper we evaluate lcv in
the presence of position estimation error. Extensive simulations
with networks of varying size and topology reveal the surprising
observation that lcv seems unaffected by estimation error. Moti-
vated by this observation we enumerate a complete set of base
node configurations seen by lcv. An analysis reveals that lcv is
immune to two of these configurations. Further simulations show
the frequency of false-positives and false-negatives imposed by
a third, ambiguous, configuration to be low. The frequency of
the ambiguous case is 10% in the worst case, for all networks
tested. We conclude that the geometric properties underlying lcv
are responsible for its resilience to error.

I. INTRODUCTION

An appropriate level of context-awareness is necessary for
the success of many wireless networks. Intuitively, identi-
fication of nodes close to the network edge is key to the
successful setup, and continued operation, of many sensor
network protocols and applications [2], [3], [4], [5], [6], [7],
[8]. Currently, identification of nodes along the network edge
remains a challenging problem.

In previous work we presented the local convex view (lcv)
as a means to identify nodes close to the network edge [1].
The local convex view is defined as the convex hull of the
nodes within view. (Thus, as many local convex views exist
as nodes in the network.) In the simplest terms a node decides
it is close to the network boundary by asking the following
question: Am I in my own local convex view? It is a heuristic
inspired by a geometric construct, the α−hull, which is able
to capture the ‘shape’ of a set of nodes [9]. Furthermore, it is
motivated by the hypothesis that within view of many nodes
there exists structural information relevant to the network.

If node position information is unavailable lcv assigns local
coordinates using a node’s 1-hop distance measurements and
the 1-hop measurements of its neighbours. Each node con-
structs a Cartesian space by placing itself at the origin and its
furthest neighbour along the horizontal axis. A third, witness,
node in range of the origin node and its furthest neighbour
is then placed appropriately. (Convex hull computations are
unaffected by translations and rotations of a set of node
locations.) lcv relies on triangulation to position remaining

nodes, though any localisation scheme suffices. In our previous
study we found lcv performance to be consistent, and resilient
to some of the qualitative drawbacks of other similar methods.

In this paper we evaluate lcv under the assumption that
position estimation is erroneous. A growing number of projects
suggest error in position estimation is currently unavoid-
able [10], [11], [12]. Our work is propelled by these studies.
We expected lcv to be adversely affected by position estima-
tion errors. Observations and analysis show this may largely
be untrue.

In our evaluation we simulate networks of varying size and
density. We vary topology by generating networks with node
locations selected from uniform, normal, and skewed (Pareto)
distributions. Position error is added to the system by blurring
neighbour positions stored at each node. In doing so, a pair of
neighbouring nodes is unlikely to agree on the position of any
shared node in common view. (Recall that each node composes
its own coordinate system independent of its neighbouring
coordinate systems.) We add to each node position an error
vector composed of a uniformly random angle, and a length
chosen from the normal distribution with a variance ranging
from 5-20% of the communication range.

The results are surprising and counter-intuitive. Using two
metrics, results show that the difference in accuracy between
the lcv in a perfect environment and one with position
estimation error are statistically insignificant. Motivated by
this observation we enumerate a complete base set of node
configurations that may be seen by lcv. Our analysis reveals
that lcv is immune to two of these configurations. Further
simulations show the frequency of false-positives and false-
negatives imposed by a third, ambiguous, configuration is
low. The frequency of the ambiguous configuration is 10%
in the worst case, for all networks tested. We conclude that
the geometric properties underlying lcv are responsible for its
resilience to error.

Our paper develops as follows. A brief discussion of related
works in Section II precedes an overview of the lcv algorithm
in Section III. Where the organization of our paper differs from
most is in its presentation of simulation results in Section IV
before the analysis, prompted by the results, in Section V. We
conclude with remarks in Section VI
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Fig. 1. (Left) Nodes u, v, w compute their local convex hull; only v and w
declare lcv status. (Right) The black nodes sit on their local convex hulls and
closely approximate the network edge.

II. RELATED WORK

For a discussion of lcv in the context of the existing body
of research, we direct our reader to [1]. We focus instead
on edge detection algorithms in the presence of error. To our
knowledge this is the first study that deals explicitly with edge
node identification in the presence of position estimation error.
We classify algorithms as statistical, topological, or geometric,
according to the taxonomy first presented in [13].

Statistical solutions assume that network structure exhibits
unique characteristics at the network edge [14], [15]. Their
success relies on global communication and high network
densities. It is unclear whether statistical methods might suffer
in the presence of estimation error. Topological solutions [6],
[16], [17] exploit the connectivity of the network to identify
nodes along the network edge. We expect that their use of
connectivity would render them immune to estimation errors.
However, topological solutions are generally expensive and
centralised in nature. Geometric solutions [1], [18] such as lcv
use node positions to reveal structural information. This class
of solution is simple and localised but also most vulnerable to
position errors.

III. OVERVIEW OF LOCAL CONVEX VIEW

In a previous study we investigated the local convex view
(lcv) as a method to identify a subset of nodes that describe
the network edge in a wireless network [1]. In this study we
extend our previous work to investigate lcv in the presence of
position estimation error. While not the main contribution of
this work, we summarize the lcv here for completeness.

Our method relies on the hypothesis that within the local
view of each node there exists some structural information.
Our algorithm makes only the assumptions that generated or
assigned node IDs within each neighbourhood are unique, and
that distance measurements are available. In this study we look
for real-world applicability by assuming erroneous position
estimation. We consider a deployment of a large wireless
network where, initially, nodes lack any knowledge of their
positions.

The local convex view is inspired by α−hulls [9], a geomet-
ric construct that captures the “shape” of a set of points. We
approximate the α−hull by computing convex hulls locally.
The idea is illustrated in Figure 1 where we compute the local
convex view for each node. A node’s lcv consists of the set of
nodes that comprise the convex hull of the neighbourhood in
view. (Thus there are as many local convex views in a network
as there are network nodes.) Observe in Figure 1 that by taking
the set of “outside” nodes from the set of local convex views,
the network edge begins to emerge.

The complete process is reproduced in Algorithm 1. A
detailed discussion of its steps, its correctness, and a simple
probabilistic model to contend with missing information may
be found in [1]. In this study we seek insight into the
viability of lcv in a practical setting by assuming that distance
measurements in Step 1 are erroneous. In [1] Step 2 describes a
localization process where neighbour positions are triangulated
relative to other nodes in the local neighbourhood. (This
process creates a local coordinate system sufficient for the
purpose of computing the local convex view.) Triangulation,
in the presence of inaccurate distance measurements, may fail
to resolve node locations. For this reason lcv allows for any
localisation scheme to be substituted in Step 2.

Algorithm 1 Boundary Node Identification Algorithm at any
node u.

1: Share the distance measurements to single hop neighbours.
2: Set u as the origin of, and construct, local coordinate

system.
3: Compute the local convex view (lcv).
4: return u ∈ lcv

IV. SIMULATION RESULTS

We evaluate the performance of lcv when error is introduced
in simulated networks of varying density and distribution.
Network nodes are distributed in a 200x200 unit space, each
node with a fixed range of 8 units. We vary node density by
changing the network size. Note that by changing size instead
of communication range we can vary the density without
affecting the maximum network diameter. Network sizes are
1500, 2500, and 3500 nodes. (In the uniform networks this
results in average neighbourhood sizes of 7, 12, and 17
nodes.) We tabulate and experiment over the largest connected
component of each network. Experiments repeat over 25 runs
of each network generated using non-overlapping random
streams.

Node locations are chosen from a normal or skewed (Pareto)
distribution in addition to the uniform distribution tradition-
ally used to generate wireless network topologies. Uniformly
distributed networks may be sufficient to provide insight yet
are poor representations of many real deployments. Normal
coordinates are generated with an average of 100 (the network
center) and a standard deviation of 40. Skewed coordinates are
chosen from the Pareto distribution with scale parameter 1.0
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and shape parameter 100.5. Graphical representations of these
networks may be found in [1].

Error is added to the system by blurring the position
of nodes from their actual locations. This blurring occurs
from the perspective of each node so that two nodes may
see a common neighbour in two different positions. Before
computing the local convex view, each coordinate is shifted.
We shift coordinates by adding a vector consisting of an angle
chosen from the uniform distribution, and a length chosen from
a parametrized normal distribution. We use the edge proximity
and regional proportionaly metrics from [1] to evaluate the
efficacy of the lcv method in the presence of error.

A. Edge Proximity

In this section we measure the proximity of lcv-nodes to
the edge of the network. Edge proximity is defined as the
probability that the location X of an lcv-node lies in region
x. This gives the likelihood that nodes sitting on their local
convex view also sit close to the network boundary.

Edge proximity plots appear in Figure 2. Subfigures are
organised such that network size and density changes across
each row, while the underlying network distribution varies
down each column. For each network we plot the edge prox-
imity for varying error values, parametrized by increasing the
variance from 0 to 20% of the communication range. Each plot
represents the cumulative distribution over partitions of the
network. Networks are partitioned in a manner appropriate to
the underlying distribution, according to the following criteria.

• Uniform networks are partitioned into quadrilateral
‘rings’. Each ring is of width equivalent to 0.25R, where
R is the communication range.

• Normal networks are partitioned into rings that are 0.25
standard deviations in width. The statement “80% of
reporting nodes sit outside 2σ” may be interpreted as
80% of reporting nodes sit amongst the outermost 5% of
network nodes.

• Skewed networks are partitioned into diagonals that span
from the y− to the x− axis, 10 units apart. So, for
example, nodes that report in the 180 region have x and
y coordinates with a sum greater than 180.

We first summarize from [1] the performance of lcv, in
general. In uniformly random networks the lcv method is
greatly affected by density. Among normal networks depicted
in Figures 2d- 2f, approximately 80% of lcv nodes report
among the furthest 5% of network nodes. Similarly, conver-
gence to 1 in skewed networks shown in Figures 2g- 2i occurs
quickly. As network sizes increase in normal and skewed
networks the curves shift to the left, indicating the point at
which the cumulative distributions converge to 1 occurs further
from the network center. One important note: in normal and
skewed networks the network edge physically occurs further
from the origin as the network grows large. Therefore the
conclusion that increases in network size are responsible for
an increase in accuracy, and hence a shift of the curves to the
left, should be avoided.

With respect to the effect of error on the performance of
lcv we find the observations to be somewhat counter-intuitive.
Within each subfigure, each curve represents a different de-
gree of error. Curves within each subfigure show identical
trends with differences in accuracy that are largely statistically
insignificant. (Confidence intervals have been omitted for
clarity.) This would indicate that, in all tested networks, the
accuracy of lcv is largely unaffected by error. We reserve a
discussion of the causes for Section V.

We proceed in the next section with an evaluation using a
second metric to confirm our observations.

B. Regional Proportionality

We find that, using the edge proximity metric, lcv seems
largely unaffected by errors in position estimation. In this
section we seek further insight by evaluating regional propor-
tionality. Regional proportionality is the proportion of nodes
that declare lcv status within each partition as described in
Section IV-A, versus those nodes that claim not to be lcv. We
call this the lcv- vs. regular-node ratio.

We plot regional proportionality in Figure 3. Subfigures
are organised such that network size and density changes
across each row, while the underlying network distribution
varies down each column. For each network we plot the edge
proximity for varying error values, parametrized by increasing
the variance from 0 to 20% of the communication range. Note
the leftward shift of curves as size increases among normal and
skewed networks. Recall from previous that this is an artifact
of the network’s edge shifting further from the origin as the
networks grow.

Within each subfigure we can compare the curves against
the network-wide proportion of lcv-nodes, represented by
the horizontal line. The network average permits a clearer
interpretation of the results. For example, in Figure 3a the
network-wide proportion of lcv-nodes is 0.17. From the same
figure we see that the proportion of lcv-nodes in the outer-most
0.25R region is 0.64 when there is zero error. We can conclude
that, with no error, nodes in the outer-most ring are almost 4
times as likely to identify with the edge of the network.

The regional proportionality metric seems to reinforce the
observation that error, as tested, has little-to-no effect on the
performance of lcv. Similar to the edge proximity metric in
Section IV-A, plots within each subfigure show identical trends
with differences in accuracy that are largely statistically in-
significant. However, there are subtle noteworthy observations.
We refer our reader first to plots derived from uniformly
generated networks in Figures 3a- 3c. We can see that error
has a more pronounced effect on lcv accuracy as the network
density increases, but only in the outer-most region of the
network.

We emphasize that the differences in accuracy, statistically
speaking, are insignificant - with one exception. A dense
uniformly generated and bounded network will eventually
capture the shape enforced by the bounds. In our experiments
this shape is a quadrilateral. It is directly responsible for the
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Fig. 2. Edge proximity distributions reveal the proximity of lcv-nodes to the network edge. The value r represents the communication range.

loss in accuracy in the outer-most ring of the network, as
density increases. We develop this idea next in Section V.

V. DISCUSSION OF RESULTS

The previous section revealed little-to-no degradation in the
performance of lcv in the presence of errors. This idea is
counter-intuitive, and so we use this section to enumerate and
discuss the scenarios faced by the local convex view method.

In our analysis we assume that the position of only a
single node has been incorrectly estimated. This relatively
benign assumption permits a clear demonstration of the effects
of error on lcv without sacrificing accuracy or completness.
Specifically, all remaining cases may be composed of the cases
presented here.

The three cases under consideration by lcv are presented in
Figure 4. For the purpose of demonstration, we consider the
lcv operation at node u. In our example topologies, neighbours
are joined to u with a solid line. The position of some
neighbouring node v determines a dash-dot-dashed line that
represents a threshold of interest. The neighbour in question
has a position estimated by the node labeled w, with a true

position that may exist anywhere inside the greyed region.
Finally, the dashed poly-line corresponds to the local convex
hull under consideration.

Figures 4a and 4b depict the two ‘good’ cases where the lcv
computation is unaffected by error. In the first case, shown in
Figure 4a, node u determines it is on the local convex view
and declares itself close to the network boundary. Note that
the local convex hull consists of the same nodes irrespective of
the actual location of w anywhere inside the grey region. The
second case shown in Figure 4b is of a similar theme. Node w
is estimated to have a location that renders node u inside its
local convex view. In fact, node w may sit anywhere in the grey
region without affecting the local convex view. In both these
cases the underlying geometry ensures the resilience of the
local convex view method: the convex hull remains consistent
so long as the error region of w remains entirely to one side
or the other of the threshold determined by (u, v).

Figure 4c depicts the ambiguous case. Node w is estimated
to have a position close enough to the threshold that its actual
location may exist on either side of the threshold. In the
example shown in Figure 4c, a w is estimated to have a
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Fig. 3. Regional proportionality reveals the proportion of nodes in each region to declare edge-node status via lcv.
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Fig. 4. In consistent cases lcv is unaffected by position estimation error.

position that renders u on the local convex view of u. If such
a w actually sits on the the other side of the threshold then
u has falsely determined that it sits on its local convex view.
The reverse may occur if w is estimated to sit close to, but on
the other side of, the threshold.

The observation in Section IV is that lcv seems relatively
unaffected by error. From our analysis we have determined that
any adverse effect of error to lcv is caused by the ambiguous
scenario demonstrated in Figure 4c. Our hypothesis is that lcv
is relatively unaffected by error because the ambiguous case

occurs very infrequently. To test our hypothesis we evaluate
the frequency of false positives and false negatives when
error is added to lcv. For each type of network the results
are partitioned as described in Section IV-A so that we may
observe lcv performance in each area of the network. We plot
for all networks the worst tested case in Figure 5, where the
variance parameter is equal to 20% of the communication
range.

Figure 5a reveals that, in uniform networks, the error in
the outer-most ring of the network hovers about 20%. Inter-
estingly, the frequency of false positives and negatives in this
region climbs as density increases. The reason is that increased
densities along the network edge more closely approximate the
artifical lines artificially bounding the network. This causes
a greater number of w nodes which are the cause of the
ambiguity that leads to false positives and negatives. As we
move deeper into the network where no artificial boundaries
exist, the frequency of incorrect responses drops dramatically.

In the outer-most regions of normal and skewed networks,
the ambiguous case appears much less frequently. For exam-
ple, among the outer-most 5% of nodes in normal networks,
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Fig. 5. Frequency of lcv false positives and false negatives in the worst tested case, with error variance 20% of communication range.

the rate of false lcv responses is approximately 10%. Similarly
for skewed networks. This may be explained by the lack
of artificial boundaries in normal and skewed networks (ie.
unlike the uniformly generated networks, these networks fail
to approximate the quadrilateral region that contains them). As
we move deeper into the network the rate of false positives
quickly drops in both normal and skewed networks.

VI. CONCLUSION

In this paper we examined the ability of the local convex
view (lcv) algorithm to identify network edge nodes in the
presence of position estimation error. We engaged in extensive
simulations of networks with topologies of varying size and
underlying distributions. Position errors were chosen from a
normal distribution with a variance up to 20% of the com-
munication range. We assumed that an increase in estimation
error would adversely reduce the accuracy of lcv. Observations
failed to reinforce our assumption. To explain the disconnect
between intuition and observation we enumerated and analysed
the three base neighbour configurations that may be seen by
a node. We show that the lcv computation is immune to
errors in two of the cases. In both cases position estimation
error changes the shape of the local convex view, but not the
nodes that comprise it. In the third case position error leads
to ambiguity, where the true position of a neighbour may lead
to a false insertion or an omission of the node undergoing the
lcv computation. Further simulation revealed the frequency of
the ambiguous case to be very low, about 10% in the worst
case for all networks tested. We conclude that the geometric
properties underlying lcv are responsible for its resilience to
error.
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