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Abstract: Intuitively, identification of nodes close to the network edge is key to the
successful setup, and continued operation, of many sensor network protocols and ap-
plications. Many virtual coordinate constructions rely on the furthest set of nodes as
beacons, and sensing applications may find useful the knowledge of the network edge.
In this paper we propose local convex view (lcv) as a means to identify nodes close to
the network edge. It is motivated by the hypothesis that some structural information
relevant to the network is buried within view of many nodes. The lcv differs from most
previous methods in that it is a localized algorithm. Nodes using lcv may establish
neighbourhood coordinates if no location information is available a priori. In those
cases where needed information is missing, we adopt a simple probabilistic model to
decide the boundary status of a node. We identify two metrics for evaluation and
compare via simulation the performance of lcv against two methods with similar prop-
erties. Further simulations reveal the surprising observation that lcv seems unaffected
by position estimation error. We enumerate and analyse a complete set of of node
configurations seen by lcv. We conclude that the geometric properties underlying lcv
are responsible for its resilience to error.

Keywords: sensor networks; boundary detection; edge detection; localisation; convex
hulls.

1 Introduction

A growing number of projects are deeply engaged in re-
search to provide context-awareness to nodes in wireless
networks. An appropriate level of context-awareness is a
key property for the success of many wireless applications.

Intuitively, pure sensing applications may benefit from
knowledge of the network boundary (see Ben-Chen et al.
2006, Cao & Abdelzaher 2004, Fang et al. 2005, Fonseca
et al. 2005, Langendoen & Reijers 2003, Rao et al. 2003,
Shang et al. 2003, Zhao et al. 2005). For example, nodes
close to the network boundary are often assumed to pro-
vide the best candidates for beacon nodes in virtual co-
ordinate constructions. The assumption is that the set of
beacons furthest apart produces the finest resolution in co-
ordinates. Moreover, awareness of the network boundary
prevents the processing of requests that are impossible to
satisfy when the request lies outside of the network space.

To date, identification of nodes along the network edge
remains a challenging problem.

In this paper we introduce the local convex view (lcv)
as a heuristic approach to identify nodes close to the net-
work edge. The local convex view is defined as the convex
hull of the nodes within range. (Thus, as many local con-
vex views exist as nodes in the network.) In the simplest
terms a node decides it is close to the network boundary
by asking the following question: Am I in my own local
convex view? It is inspired by the knowledge that the con-
vex hull of a set of points consists of the outermost points
in the set. Furthermore, it is motivated by the hypothe-
sis that within view of many nodes there exists structural
information relevant to the network.

For those contexts where position information is unavail-
able lcv assigns local coordinates using its 1-hop distance
measurements and the 1-hop measurements of its neigh-
bours. Each node constructs a Cartesian space by plac-
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ing itself at the origin and its furthest neighbour along
the horizontal axis. All remaining nodes in the neigh-
bourhood are assigned coordinates relative to established
coordinates. The success of this triangulation approach
relies on the assumption that a node’s neighbourhood is
2-connected, ie. removing the node in question leaves no
disconnected components. Where this assumption fails, we
show the maximum number of possible disconnected com-
ponents is 5. Furthermore, when a neighbourhood is not
so connected, we suggest a simple probabilistic model to
determine boundary status according to the criteria set in
lcv.

In our evaluation we simulate networks of varying size
and topology. Topologies vary by generating networks
where node locations are selected from uniform, normal,
and skewed (Pareto) distributions. In our investigation we
have identified two metrics for comparison. The edge prox-
imity measures the likelihood of boundary-node declara-
tions that occur relative to the network edge. The regional
proportionality measures the proportion of boundary- ver-
sus regular-nodes relative to the network edge.

We first compare lcv against the 2-hop method from Rao
et al. (2003) and an adaptation of the tent-rule in Fang
et al. (2004), whose localised operations and limited mes-
senging complexity make them suitable for comparison.
Results indicate that the tent-rule is unsuitable for net-
work edge detection. The underlying cause is in its design
which is to identify nodes that abut any unreachable re-
gion, including those that are ‘inside’ the network. The 2-
hop method, which gathers some global information, gen-
erally returns the most accurate results. While perhaps
unsurprising, this observation is misleading. Further in-
vestigation shows that the 2-hop method reveals clusters
of boundary nodes as the network grows dense. This leaves
some regions of the network edge over-represented while
others are left under-represented. We find this is an arti-
fact of the way in which the 2-hop method gathers informa-
tion. By contrast, lcv reveals a reasonable set of boundary
nodes. Unlike the 2-hop and tent-rule methods, lcv is fairly
resilient to changes in topology.

Our evaluation is further propelled by the growing num-
ber of studies that suggest error in position estimation is
currently unavoidable (see Niculescu & Nath 2004, Sav-
vides & Garber 2005, Whitehouse et al. 2005). We insert
position error to the system by blurring neighbour posi-
tions stored at each node. In doing so, a pair of neigh-
bouring nodes is unlikely to agree on the relative position
of any third node in common view.

The results are surprising and counter-intuitive: The
difference in accuracy between the lcv in a perfect envi-
ronment and one with position estimation error are sta-
tistically insignificant. Motivated by this observation we
enumerate a complete base set of node configurations that
may be seen by lcv. Our analysis reveals that lcv is im-
mune to two of these configurations. Further simulations
show the frequency of false-positives and false-negatives
imposed by a third, ambiguous, configuration is low. We
conclude that the geometric properties underlying lcv are

responsible for its resilience to error.
In summary, in this paper we develop a boundary node

selection method. It uses only nodes in range and re-
solves any needed information that is missing. We study
our method alongside two methods with similar proper-
ties, and in environments where position estimation is er-
roneous. Our simulations and analysis reveal that lcv is
resilient to the impediments faced by competing methods,
as well as errors in position estimation.

2 Context and Related Work

Our work appears amid a growing body of research on
boundary detection. We focus on works that are dis-
tributed or localized in nature. Existing work may be
classified according to the taxonomy presented in Wang
et al. (2006) as either geometric, statistical, or topological
in nature.

Geometric solutions to the boundary identification prob-
lem use the positions associated with each node. Our work
falls into this category. This class of solution is simple and
localised but also most vulnerable to position errors. To
our knowledge the work by Fang et al. (2004) is the first
such work. In it the authors find those nodes abutting any
‘hole’ in the network as defined by greedy routing tech-
niques. Their methods detect such nodes using local infor-
mation. A network node is found to abut a local minima if
its neighbourhood reflects a geometry as defined by a tent-
rule. Since their method is both geometric and local, we
have selected the tent-rule method to compare against our
own. For this reason we reserve the details of the tent-rule
for discussion later in this section.

Probability distributions underlying network deploy-
ments have been used to formulate statistical solutions.
One solution, proposed by Fekete et al. (2004), relies on the
idea that nodes close to network boundaries have fewer in-
cident edges in the network graph than internal nodes. The
authors use statistical methods to derive suitable thresh-
olds to separate edge nodes from internal nodes using the
node degrees. In S.P. Fekete and M. Kaufmann and A.
Krller and N. Lehmann (2005) a similar statistical sep-
aration is proposed. Boundary nodes are separated from
internal nodes by using a ‘centrality’ measure which counts
the number of shortest paths that pass through a node. A
higher centrality value occurs among internal nodes. Sta-
tistical solutions generally hinge on uniformly distributed
networks and exceedingly high densities. Also, it is unclear
if or how statistical methods might suffer in the presence
of estimation error. Our method shares in the view that
nodes at the boundary exhibit unique characteristics. Un-
like statistical methods, our approach is localized, is shown
to be resilient to the underlying distribution, and performs
well in lower densities environments.

Topological solutions appear in Funke (2005), Kröller
et al. (2006), Rao et al. (2003). Kröller et al. (2006) pro-
pose a combinatorial approach; it is the only determin-
istic work of which we are aware to produce correct re-
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sults without relying on the unit disc graph model (where
all communication ranges are normalized). This solution
comes at a high cost: It deals with complex combinatorial
structures in a distributed manner. Rao et al. (2003) sug-
gest a single-beacon broadcast solution. We compare this
method with our own since its total messaging cost is sim-
ilar to localized approaches such as ours. A more detailed
discussion appears later in this section. Funke (2005) later
proposed extensions to a similar idea. The idea relies on
the observation that ‘rings’ of the network, described by
hop-distances to a beacon, are broken when encountered
by a network boundary. This project was later refined
in Funke & Klein (2006). Finally, topological inference is
used by Wang et al. (2006) to detect internal boundaries.
Their detection method works by identifying the distinct
portions of similar paths that span the network. We ex-
pect that topological methods’ use of connectivity would
render them immune to estimation errors. However, topo-
logical solutions are generally expensive and centralised in
nature.

To our knowledge this is the first study that also deals
explicitly with edge detection in the presence of position
estimation error. We emphasize that our goal, different
from most boundary detection methods, is to identify a
set of nodes that lie close to the network edge. Needing
only 1-hop information, our method is localized and con-
verge quickly. The cost of localization is reduced accuracy.
To properly evaluate our algorithm we have selected the
following two approaches that function under similar com-
putational and messenging constraints.

The 2-hop method (Rao et al. 2003). Stemming from
a need to identify a set of furthest beacons, the authors in-
ject an anchor into the network. Each node in the network
records and transmits its hop distance to the anchor. Any
node that finds itself the furthest of all its 2-hop neigh-
bours from the anchor becomes a beacon. On account of
the focus of this work being not the beacon selection but
an ensuing coordinate construction, no evaluation of the
quality of selection was provided.

Tent-rule (Fang et al. 2004). The tent-rule, so named
for its appearance when represented diagrammatically,
identifies all unreachable regions as defined by greedy rout-
ing. It works by sorting neighbours angularly about a
node. If the bisectors of edges to contiguous neighbours
intersect outside of range of the node, then the node abuts
an unreachable region. Given that the network boundary
itself delineates an unreachable region, the adaptation of
the tent-rule for our investigation is appropriate.

3 Local Convex View

In this section we describe the man contribution of our
paper, an autonomous method for selecting a subset of
nodes to describe the network edge. Our method relies
on the hypothesis that within the local view of each node
some structural information exists. Our algorithm makes
only the assumptions that generated or assigned node IDs

u
v

w

Figure 1: (Left) Nodes u, v, w compute their local convex
hull; only v and w declare boundary status. (Right) The
collection of local convex hulls closely resembles the α-hull.

within each neighbourhood are unique, and that distance
measurements are available. We consider a deployment of
a large wireless network where, initially, nodes lack any
knowledge of their positions.

3.1 Local Boundary Node Identification

A set of nodes far apart may be obtained by finding the
convex hull1 of a set of nodes. There are potential draw-
backs to choosing the convex hull of the network: Too
few boundary nodes may be chosen, the shape of irregu-
lar networks may fail to appear and, finally, we know of
no methods by which an approximation of the convex hull
may be localized.

By contrast we can localise the convex hull computation
to capture the ‘shape’ of a sensor network. The idea is
illustrated in Figure 1 where we compute the local convex
view for each node. A node’s local convex view consists
of the set of nodes that comprise the convex hull of the
neighbourhood in view. (Thus there are as many local
convex views in a network as there are network nodes.)
Observe in Figure 1 that by taking the set of “outside”
nodes from the set of local convex views, an α−hull-like
structure begins to emerge. We use this observation to
motivate our method for boundary node identification.

In the simplest terms a node decides if it lies on the
network boundary by asking the following question: Am
I in my own local convex view? With the return of a
positive answer, a node declares itself to be a boundary
node. Referring again to Figure 1 we focus on the nodes
labelled u, v, w. Using the local convex view criteria nodes
v and w declare themselves to be boundary nodes while
node u sits idle. We evaluate the accuracy of this criteria
in Section 4 and proceed with a discussion of the algorithm
and its merits.

The complete procedure appears in Algorithm 1. For
each node u the boundary node declaration process con-
sists of three steps. Steps 1 and 2 remedy the initial lack

1In two-dimensions, a set S of points is defined as convex if for
every x ∈ S and y ∈ S, the segment xy ⊆ S (O’Rourke 1998).
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Algorithm 1 Boundary Node Identification Algorithm at
any node u.
1: Share the distance measurements to single hop neigh-

bours.
2: Set u as the origin of, and construct local coordinate

system.
3: Compute the local convex view (lcv).
4: return u ∈ lcv

u v

w

w

x

Figure 2: Neighbourhood coordinate establishment.

of position awareness. Recall that network nodes lack any
knowledge of their positions, information that is necessary
to compute a convex hull. We obtain this information by
constructing a local coordinate system as this is sufficient
to compute the local convex hull.

Each node in the network begins by sharing its 1-hop dis-
tance measurements with its neighbours. Once obtained,
each node constructs a local coordinate system by plac-
ing itself at the origin and, in a depth-first manner, places
remaining neighbours relative to those whose local coor-
dinates have been established. We demonstrate this idea
from the perspective of node u in Figure 2. Node u places
itself at the origin of a Cartesian space and sits neighbour
v on the horizontal axis. (For our purposes we use the
furthest neighbour.) The next node, w, may be placed on
either side of the horizontal axis since convex hull compu-
tations are unaffected by rotations and translations. Re-
maining nodes are placed similarly and with respect to
established coordinates.

In the final step a node computes the convex hull over
the neighbourhood in view. If it sits within its local convex
view (ie. in the set of points describing the convex hull of
the local neighbourhood) then it declares itself to be a
boundary node.

3.2 Correctness of Local Convex View

It is impossible for a node to declare boundary status un-
less it sits on a network boundary, as demonstrated in Fig-
ure 3. We can see that node s may border an unreach-
able region according to two definitions: Figure 3a demon-
strates the case in which we are uninterested since s has
neighbours that lay qualitatively closer to the unreachable
region (neighbours of s sit closer to the greyed region than
the tangent at s); by contrast Figure 3b demonstrates that,
within view, s is closest to the unreachable region. This

implies that false positives may be returned (eg. routing
‘holes’ inside the network), and that false negatives are
impossible.

S

(a) The ‘concave’ case.

S

(b) The convex case.

Figure 3: A node may abut unreachable regions in two
ways. The lcv detects regions that are outwardly unreach-
able.

The cost of the algorithm is one transmission to share
distance vectors, and O(d log d) computation where d is the
number of nodes in the neighbourhood. The local convex
view avoids broadcasts and inter-node cooperation. It is
both protocol and architecture independent.

To better illustrate the outcome of our method we use
the three networks depicted in Figure 4. Each network con-
sists of 3000 nodes in a 200x200 space each with a range
of 8 units. Figure 4a represents a network where node lo-
cations are distributed according to a uniformly random
distribution; in Figure 4b node locations are distributed
according to a normal distribution; in Figure 4c node lo-
cations are distributed according to a skewed (Pareto) dis-
tribution. Within each figure we plot the complete set of
network nodes on the left and the subset of nodes that de-
clare boundary status on the right. Comparing the right
and left plots we see the majority of nodes that declare
beacon status lie in the outer regions of the network.

Our continued evaluation appears in Section 4. Next we
construct a simple probabilistic model to deal with missing
information during coordinate assignment.

3.3 Dealing with Incomplete Information

We previously described the way each node assigns coor-
dinates to neighbours. There remains in this approach
a caveat. Say node u constructs its neighbourhood co-
ordinate system according to Algorithm 1. Coordinate
assignments may only succeed if u’s neighbourhood is 2-
connected2. We can also say the removal of u must leave
a single connected component. Without 2-connectedness
a node will be unable to assign a coordinate to at least
one neighbour. In this section we suggest a probabilistic
solution.

Consider two contiguous neighbours around u sorted
in angular order. By normalizing the communication

2A 2-connected network is one in which there are 2 disjoint paths
between every pair of nodes.
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(c) A skewed (Pareto) network.

Figure 4: Example networks of 3000 nodes with varying topologies on the left. The corresponding lcv nodes for each
network on the right.

Π/3

Π/3
β 

β 

α

v

u

Figure 5: During coordinate assignment u finds v is dis-
connected from the remaining neighbourhood. Node u lies
on the lcv only if neighbour v sits in the range denoted by
β.

range to 1 and solving the associated cosine rule, 12 =
12 +12− cosA, we determine the maximum possible angle
between two communicating neighbours to be π/3. Using
this result we can show that there exists at most 5 discon-
nected components (ie. non-communicating neighbours)
around u. Furthermore, a node cannot lie on its local con-
vex view if it has greater than 3 such components.

In the example shown in Figure 5 node u has assigned
coordinates to three neighbours in a connected component.
Wishing to assign a coordinate to node v, node u sees that
v communicates with no other neighbour of u and so must
lie somewhere along the dotted arc. If v lies in the ranges
described by angle β then u must sit on its local convex
view. Hence, u sits on its lcv with probability

p[u ∈ lcv] =
2β

2β + α
. (1)

The range of angles of α is equivalent to the range of angles
covered by the neighbours with assigned coordinates. So
β may be written as

β = π − (α +
π

3
). (2)

Note that the probability p[u ∈ lcv] = 0 when α ≥ 2π/3.
Then, by substituting Equation 2 into 1, node u declares
it is on its lcv as follows,

p[u ∈ lcv] =

{ 4π
3 −2α
4π
3 −α

, if α < 2π
3

0, otherwise.
(3)

We have demonstrated a probabilistic solution for the
case where there are two disconnected components. This
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approach may be similarly extended for three such compo-
nents. We omit the details due to space limitations.

4 Performance Evaluation

In this section we evaluate lcv with the tent-rule and the
2-hop methods, described in Section 2. Our comparison is
followed with an evaluation of lcv when position estimation
error is inserted into the system.

4.1 Experimental Design

To evaluate and compare the algorithms, we simulate net-
works of varying density and distribution. Network nodes
are distributed in a 200x200 unit space, each node with a
fixed range of 8 units. We vary node density by changing
the network size. Note that by changing size instead of
communication range we can vary neighbourhood density
without affecting the maximum network diameter. Net-
work sizes are 1500, 2500, and 3500 nodes. (In the uniform
networks this results in average neighbourhood sizes of 7,
12, and 17 nodes.) To obtain more accurate results we
tabulate and experiment over the largest connected com-
ponent of each network. Experiments repeat over 25 runs
of each network generated using non-overlapping streams.

Nodes locations are chosen from a normal or skewed (Pa-
reto) distribution in addition to the uniform distribution
traditionally used to generate wireless network topologies.
Uniformly distributed networks may be sufficient to pro-
vide insight yet are poor representations of many real de-
ployments. Normal coordinates are generated with an av-
erage of 100 (the center) and a standard deviation of 40.
Skewed coordinates are chosen from the Pareto distribu-
tion with scale parameter 1.0 and shape parameter 100.5.
Examples topologies appear in Figure 4.

The choice of appropriate metrics is not obvious. We
have isolated two metrics we believe to be suitable for
this study. Our measures of success center on locations of
nodes that declare boundary status relative to the network
boundary. For this reason networks are separated into par-
titions appropriate for each network type, described in Sec-
tion 4.3.1. Measures of success are represented as follows:

• We measure the edge proximity as the probability that
the location X of a declared boundary node lies in re-
gion x. This measures the likelihood that nodes sitting
on their local convex view are good beacon candidates
(ie. sitting close to the network boundary).

• We measure the regional proportionality as the per-
centage of nodes within a region that declare bound-
ary status. This ratio should be highest towards the
true network boundary. It is designed to reinforce
those methods that are more likely to find nodes close
to the edge of the network.

Our simulations implement the algorithm described in
Section 3 with one addition. Nodes that observe a local

convex view consisting of three or fewer nodes return neg-
ative boundary status. Our experiments show that this re-
duces the number of reporting nodes in dense networks to
a manageable level without compromising results in sparse
networks.

4.2 Performance in a Perfect Environment

Our evaluation begins with a direct comparison between
the performance of lcv, as well as the tent-rule and the
2-hop methods described in Section 2. These methods’
similarities to lcv in properties makes them appropriate
for comparison.

4.2.1 Boundary Node Set Size

One of our goals is to identify a reasonable set of bound-
ary nodes: too many nodes create ambiguity, while too
few risk sacrificing resolution. We report the number of
actual reporting nodes as the boundary node set size. The
boundary node set size is largely a subjective measure we
use to gain insight into measures that are later used.

We expect and confirm uniformly generated networks
to be the least-well performing of the three networks we
study. Tables 1, 2, and 3 list the average size of the largest
connected component (lcc), and the average number of
nodes that declare boundary status for each network, for
all methods. All values appear with their 99% confidence
intervals.

The 2-hop rule consistently returns the smallest num-
ber of nodes that declare boundary status. We believe the
underlying causes are that i) the 2-hop method compiles
global information and that ii) it maintains a record of its
2-hop neighbourhood, allowing decisions that are better
informed. (We will discover this observation to be untrue
in later sections.) Despite the increased knowledge of the
2-hop method, lcv remains competitive in all but the spars-
est of uniform networks. Across all networks the tent-rule
returns 2-3 times greater a number of nodes than the best
performing method. The underlying cause is that the tent-
rule is designed to report all routing holes, including holes
that are ‘internal’ to the network.

Comparing the values from Tables 1, 2, and 3, the num-
ber of boundary-status nodes appear to be most greatly
affected by density in uniform networks. For example, in
uniform networks the ratio of boundary-to-regular nodes
reported by lcv varies from 1 in 6 in the sparsest networks
to 1 in 30 among dense networks. While there is some
variation in non-uniform network numbers, the effects as-
sociated with increases in network size are much less pro-
nounced.

4.2.2 Edge Proximity

The boundary node set size hides the locations of the nodes
that report boundary status. In this section we measure
the proximity of reporting nodes to the edge of the net-
work. The edge proximity, depicted in Figure 6, is tabu-
lated as the cumulative distribution over partitions of the
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Table 1: No. of boundary nodes returned in Uniform networks with 99% confidence intervals.
Network Size Method Largest

(Neighbourhood) lcv tent rule 2-hop Conn. Comp.
1500 (7) 264.4 ± 8.9 466.7 ± 8.1 130.3 ± 9.0 1490 ± 7.5
2500 (12) 140.9 ± 5.1 299.3 ± 6.0 103.6 ± 5.6 2499.8 ± 0.4
3500 (17) 100.6 ± 3.4 181.6 ± 5.6 101.4 ± 9.8 3499.9 ± 0.2

Table 2: No. of boundary nodes returned in Normal networks with 99% confidence intervals.
Method Largest

Network Size lcv tent rule 2-hop Conn. Comp.
1500 83.9 ± 5.8 161.0 ± 6.3 63.2 ± 4.4 1406.7 ± 7.7
2500 87.3 ± 4.9 160.1 ± 4.9 68.0 ± 3.8 2433.8 ± 4.9
3500 88.0 ± 4.6 155.4 ± 5.5 69.6 ± 3.9 3450.8 ± 5.3

Table 3: No. of boundary nodes returned in Skewed networks with 99% confidence intervals.
Method Largest

Network Size lcv tent rule 2-hop Conn. Comp.
1500 103.8 ± 7.1 168.8 ± 9.3 78.3 ± 10.2 1359.0 ± 12.9
2500 116.0 ± 5.6 216.7 ± 11.1 114.3 ± 15.4 2382.2 ± 10.9
3500 125.4 ± 6.0 244.1 ± 9.3 135.6 ± 17.4 3403.8 ± 12.3

network. Each type of network is partitioned in a fashion
that is appropriate for its overall shape, according to the
following criteria.

Uniform networks are partitioned into quadrilateral
‘rings’. Each ring is of width equivalent to 0.25R,
where R is the communication range.

Normal networks are partitioned into rings that are
0.25 standard deviations in width. The statement
“80% of reporting nodes sit outside 2σ” may be in-
terpreted as 80% of reporting nodes sit amongst the
outermost 5% of network nodes.

Skewed networks are partitioned into diagonals that
span from the y to the x− axis, 10 units apart. So,
for example, nodes that report in the 180 region have
x and y coordinates with a sum greater than 180.

The accuracy of all three methods generally follows sim-
ilar trends. Among normal networks depicted in Fig-
ures 6d-6f each method reports a very small likelihood
of edge proximity amongst the furthest 1% of nodes, and
quickly converges to much higher values. As network size
increases the curves shift to the left, indicating the point
at which the cumulative distributions converge to 1 occurs
further from the network center. Among the skewed net-
works in Figures 6g- 6i the 2-hop method reports the great-
est number of boundary nodes closest to the edge, though
all methods converge on 1 very quickly. As with the normal
networks, convergence to 1 shifts further from the origin
(a left shift in the curves) as the network increases in size.
One important note: in normal and skewed networks the
network edge physically occurs further from the origin as
the network grows large. Therefore the conclusion that
increases in network size are responsible for the increased
accuracy represented by curves shifting to the left should
be avoided.

One observation requires special attention. Notice as
uniformly random networks increase in size from 1500

nodes in Figure 6a to 3500 nodes in Figure 6c, the in-
crease of boundary nodes reported by lcv in the outer-most
0.25R increases to twice that of the 2-hop method. Further
investigation reveals that the 2-hop method suffers from
a clustering effect that is due to the way it records hop
counts. In a wireless environment where a node location is
recorded as the hop-count from a beacon, many neighbour-
ing nodes will share the same hop distance. These neigh-
bours may span a region as wide as R units. In higher
density networks the 2-hop method will heavily concen-
trate some boundary nodes along some portions of the net-
work edge, while leaving other portions under-represented.
This phenomenon is illustrated in Figure 8 which shows the
boundary nodes as declared by the 2-hop method in net-
works of 3000 nodes. The conclusion to be drawn is that
the 2-hop method is adversely affected by higher density
environments.

4.2.3 Regional Proportionality

Edge proximity reveals the position of nodes declaring
boundary status relative to the edge of the network. In this
section we seek further insight by evaluating regional pro-
portionality, the proportion of nodes that declare boundary
status within each partition, as described in Section 4.3.1,
versus those nodes that claim not to be on the boundary.
We call this the boundary- vs. regular-node ratio.

We plot regional proportionality for each algorithm, for
each network, in Figure 7. From this view it appears that
the tent-rule method produces the most accurate results,
that the 2-hop method produces the least accurate results,
and that lcv lies in between. This interpretation is mis-
leading. It is inappropriate to compare the curves against
each other. Rather, it is more appropriate to compare the
curves against the network-wide proportion of boundary
declaring nodes. The network-wide proportions may be
calculated using the values reported in Tables 1- 3.

As an example, we direct our reader to the horizontal
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Figure 6: Edge proximity distributions reveal the proximity to the network edge of nodes that declare boundary status.

plots in Figures 7a, 7d, 7g. (We have otherwise omitted
these curves for clarity, and due to space limitations.) The
horizontal lines represent the network-wide proportion of
nodes that declare boundary status using lcv. This average
permits a clearer interpretation of the results. For exam-
ple, in Figure 7a the network-wide proportion of boundary
declaring nodes by lcv is 0.17. From the same figure we
see that the proportion of boundary declaring nodes in the
outer-most 0.25R region using lcv is 0.64. We can conclude
that, using lcv, nodes in the outer-most ring are almost 4
times as likely to identify with the edge of the network.

Taking this perspective, the reason tent-rule appears to
produce more accurate results is that it yields a higher
network-wide average. By taking the network-wide aver-
ages into account we can observe that sparse uniform, and
normal networks in general, are best served by the 2-hop
method. In the remaining networks lcv produces the high-
est proportion of boundary nodes closer to the network
edge.

4.2.4 Summary of Comparison

In summary, the lcv approach performs consistently across
all networks tested. The tent-rule, by design, finds all
nodes that abut an unreachable region irrespective of the
region’s location in the network. By contrast the lcv re-
veals a smaller set of boundary nodes that describe the

network boundary more concisely.
Moreover, the observation that the 2-hop approach pro-

duces more accurate results than lcv is misleading. Fig-
ure 8 illustrates that the 2-hop method is adversely af-
fected by network density because the distance to the
bootstrap beacon is recorded in hops. Since many neigh-
bouring nodes record the same hop count, the 2-hop ap-
proach reveals boundary nodes that are closely clustered
together. This leaves many portions of the network edge
under-represented. Furthermore, the ability of the 2-hop
method to reveal boundary nodes suffers if the bootstrap
beacon is poorly placed (see Rao et al. 2003). The lcv
suffers none of these drawbacks.

4.3 lcv and Position Estimation Error

Error is added to the system by blurring the position of
nodes from their actual locations. This blurring occurs
from the perspective of each node so that two nodes may
see a common neighbour in two different positions. Be-
fore computing the local convex view, each coordinate is
shifted. We shift coordinates by adding a vector consist-
ing of an angle chosen from the uniform distribution, and
a length chosen from a parametrized normal distribution.
We use the edge proximity and regional proportionaly met-
rics described in Section 4.1 to evaluate the efficacy of the
lcv method in the presence of error.
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Figure 7: Regional proportionality reveals the proportion of nodes in each region to declare closeness to the network
edge.
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Figure 8: The 2-hop method is adversely affected by increased density. Boundary declaring nodes cluster together
leaving many regions of the network edge under-represented. Example networks are 3000 nodes in size.

4.3.1 Edge Proximity under Error

Edge proximity is defined as the probability that the lo-
cation X of an lcv-node lies in region x. This gives the
likelihood that nodes sitting on their local convex view
also sit close to the network boundary.

Edge proximity plots appear in Figure 9. Subfigures
are organised such that network size and density changes
across each row, while the underlying network distribution
varies down each column. For each network we plot the
edge proximity for varying error values, parametrized by
increasing the variance from 0 to 20% of the communica-
tion range. Each plot represents the cumulative distribu-

tion over partitions of the network. Networks are parti-
tioned in the manner described in Section 4.2.2.

With respect to the effect of error on the performance
of lcv we find the observations to be somewhat counter-
intuitive. Within each subfigure, each curve represents
a different degree of error. Curves within each subfig-
ure show identical trends with differences in accuracy that
are largely statistically insignificant. (Confidence intervals
have been omitted for clarity.) This would indicate that,
in all tested networks, the accuracy of lcv is largely unaf-
fected by error. We reserve a discussion of the causes for
Section 5.

We proceed in the next section with an evaluation using
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Figure 9: Edge proximity distributions reveal the proximity of lcv-nodes to the network edge. Error ranges from 0−20%
of communication range, r.

a second metric to confirm our observations.

4.4 Regional Proportionality under Error

We find that, using the edge proximity metric, lcv seems
largely unaffected by errors in position estimation. In this
section we seek further insight by evaluating regional pro-
portionality. Regional proportionality is the proportion of
nodes that declare lcv status within each partition as de-
scribed in Section 4.2.2, versus those nodes that claim not
to be lcv. We call this the lcv- vs. regular-node ratio.

We plot regional proportionality in Figure 10. Sub-
figures are organised such that network size and den-
sity changes across each row, while the underlying net-
work distribution varies down each column. For each net-
work we plot the edge proximity for varying error values,
parametrized by increasing the variance from 0 to 20% of
the communication range. Note the leftward shift of curves
as size increases among normal and skewed networks. Re-
call from previous that this is an artifact of the network’s
edge shifting further from the origin as the networks grow.

Within each subfigure we can compare the curves against
the network-wide proportion of lcv-nodes, represented by
the horizontal line. The network average permits a clearer
interpretation of the results. For example, in Figure 10a
the network-wide proportion of lcv-nodes is 0.17. From the

same figure we see that the proportion of lcv-nodes in the
outer-most 0.25R region is 0.64 when there is zero error.
We can conclude that, with no error, nodes in the outer-
most ring are almost 4 times as likely to identify with the
edge of the network.

The regional proportionality metric seems to reinforce
the observation that error, as tested, has little-to-no ef-
fect on the performance of lcv. Similar to the edge prox-
imity metric in Section 4.2.2, plots within each subfigure
show identical trends with differences in accuracy that are
largely statistically insignificant. However, there are subtle
noteworthy observations. We refer our reader first to plots
derived from uniformly generated networks in Figures 10a-
10c. We can see that error has a more pronounced effect
on lcv accuracy as the network density increases, but only
in the outer-most region of the network.

We emphasize that the differences in accuracy, statis-
tically speaking, are insignificant - with one exception. A
dense uniformly generated and bounded network will even-
tually capture the shape enforced by the bounds. In our
experiments this shape is a quadrilateral. It is directly re-
sponsible for the loss in accuracy in the outer-most ring
of the network, as density increases. We develop this idea
next in Section 5.
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Figure 10: Regional proportionality reveals the proportion of nodes in each region to declare edge-node status via lcv.
Error ranges from 0− 20% of communication range, r.

5 On the Resilience of lcv to Error

The previous section revealed little-to-no degradation in
the performance of lcv in the presence of errors. This idea
is counter-intuitive, and so we use this section to enumerate
and discuss the scenarios faced by the local convex view
method.

In our analysis we assume that the position of only a
single node has been incorrectly estimated. This relatively
benign assumption permits a clear demonstration of the
effects of error on lcv without sacrificing accuracy or com-
pletness. Specifically, all remaining cases may be composed
of the cases presented here.

The three cases under consideration by lcv are presented
in Figure 11. For the purpose of demonstration, we con-
sider the lcv operation at node u. In our example topolo-
gies, neighbours are joined to u with a solid line. The
position of some neighbouring node v determines a dash-
dot-dashed line that represents a threshold of interest. The
neighbour in question has a position estimated by the node
labeled w, with a true position that may exist anywhere
inside the greyed region. Finally, the dashed poly-line cor-
responds to the local convex hull under consideration.

Figures 11a and 11b depict the two ‘good’ cases where
the lcv computation is unaffected by error. In the first
case, shown in Figure 11a, node u determines it is on the

v

w

u

(a) Consistent

v

w

u

(b) Consistent

v

w

u

(c) Inconsistent

Figure 11: In consistent cases lcv is unaffected by position
estimation error.

local convex view and declares itself close to the network
boundary. Note that the local convex hull consists of the
same nodes irrespective of the actual location of w any-
where inside the grey region. The second case shown in
Figure 11b is of a similar theme. Node w is estimated to
have a location that renders node u inside its local con-
vex view. In fact, node w may sit anywhere in the grey
region without affecting the local convex view. In both
these cases the underlying geometry ensures the resilience
of the local convex view method: the convex hull remains
consistent so long as the error region of w remains entirely
to one side or the other of the threshold determined by

11



(u, v).
Figure 11c depicts the ambiguous case. Node w is esti-

mated to have a position close enough to the threshold that
its actual location may exist on either side of the thresh-
old. In the example shown in Figure 11c, a w is estimated
to have a position that renders u on the local convex view
of u. If such a w actually sits on the the other side of the
threshold then u has falsely determined that it sits on its
local convex view. The reverse may occur if w is estimated
to sit close to, but on the other side of, the threshold.

The observation in Section 4.3 is that lcv seems relatively
unaffected by error. From our analysis we have determined
that any adverse effect of error to lcv is caused by the am-
biguous scenario demonstrated in Figure 11c. Our hypoth-
esis is that lcv is relatively unaffected by error because the
ambiguous case occurs very infrequently. To test our hy-
pothesis we evaluate the frequency of false positives and
false negatives when error is added to lcv. For each type
of network the results are partitioned as described in Sec-
tion 4.3.1 so that we may observe lcv performance in each
area of the network. We plot for all networks the worst
tested case in Figure 12, where the variance parameter is
equal to 20% of the communication range.

Figure 12a reveals that, in uniform networks, the error in
the outer-most ring of the network hovers about 20%. In-
terestingly, the frequency of false positives and negatives in
this region climbs as density increases. The reason is that
increased densities along the network edge more closely ap-
proximate the artifical lines artificially bounding the net-
work. This causes a greater number of w nodes which are
the cause of the ambiguity that leads to false positives and
negatives. As we move deeper into the network where no
artificial boundaries exist, the frequency of incorrect re-
sponses drops dramatically.

In the outer-most regions of normal and skewed net-
works, the ambiguous case appears much less frequently.
For example, among the outer-most 5% of nodes in normal
networks, the rate of false lcv responses is approximately
10%. Similarly for skewed networks. This may be ex-
plained by the lack of artificial boundaries in normal and
skewed networks (ie. unlike the uniformly generated net-
works, these networks fail to approximate the quadrilateral
region that contains them). As we move deeper into the
network the rate of false positives quickly drops in both
normal and skewed networks.

6 Conclusions and Future Work

This paper has presented and compared methods to iden-
tify a subset of nodes on the network boundary (for sens-
ing and localizing applications). Our key contribution is a
heuristic algorithm that operates locally. A node decides
it is close to the network edge if the node finds that it
lies on the convex hull of its 1-hop neighbourhood. Where
position information is unavailable lcv assigns local coor-
dinates to each neighbour so that geometric relationships,
and hence the convex hull, may be computed. Coordinate

assignment requires that a node view its neighbourhood
as 2-connected, ie. if a node removes itself then a single
connected component remains. We have determined the
maximum possible number of disconnected components to
be 5. In such cases we have shown that it is possible for
a node to sit on the local convex hull only where removal
of the node leaves a maximum of 3 components. A simple
probabilistic model was proposed to decide the convex hull
of neighbourhoods with disconnected components.

We simulated lcv, tent-rule, and 2-hop methods in net-
works of varying density constructed from uniform, nor-
mal, and skewed (Pareto) distributions. For evaluation we
identified two metrics, edge proximity, and regional pro-
portionality. We found that the behaviour of all three
methods demonstrated similar trends. According to these
metrics the tent-rule was the least well-performing, while
the 2-hop method performed best. However, this conclu-
sion is misleading as the 2-hop method also reveals bound-
ary nodes that are tightly clustered, while ignoring other
boundary nodes altogether. lcv was found to be resilient
to the qualitative drawbacks of the 2-hop approach.

In this paper we examined the ability of the local con-
vex view (lcv) algorithm to identify network edge nodes in
the presence of position estimation error. We engaged in
extensive simulations of networks with topologies of vary-
ing size and underlying distributions. Position errors were
chosen from a normal distribution with a variance up to
20% of the communication range.

Further examination failed to reinforce the assumption
that lcv would be adversely affected by position estimation
error. To explain the disconnect between intuition and
observation we enumerated and analysed the three base
neighbour configurations that may be seen by a node. In
two cases position estimation error changes the shape of
the local convex view, but not the nodes that comprise
it. In the third case position error leads to ambiguity,
where the true position of a neighbour may lead to a false
insertion or an omission of the node undergoing the lcv
computation. Further simulation revealed the frequency
of the ambiguous case to be very low, about 10% in the
worst case for all networks tested. We conclude that the
geometric properties underlying lcv are responsible for its
resilience to error.

At present we are transforming lcv into a deterministic
algorithm that produce a descriptive map of the network
boundaries. Preliminary results are positive, and will be
part of a forthcoming publication.
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