
Localised Alpha-shape Computations for

Boundary Recognition in Sensor Networks

Marwan Fayed∗ Hussein T. Mouftah

School of Information Technology and Engineering (SITE),
University of Ottawa, 800 King Edward Ave.,

Ottawa, ON, K1N 6N5 Canada

Abstract

Intuitively, many wireless and sensing applications benefit from knowledge of net-
work boundaries. Many virtual coordinate constructions rely on the furthest set
of nodes as beacons. Network edges may also bound routing holes in the network,
regions of failure due to environmental effects, or indicate the need for additional
deployment. In this paper we solve the edge detection problem locally using a ge-
ometric structure called the alpha-shape (α-shape). For a disc of radius 1/α, the
α-shape consists of nodes (and joining edges) that sit on the boundary of the discs
that contain no other nodes in the network. In the simplest terms a node decides it
is on a network boundary by asking the following question: “Do I sit on the bound-
ary of a disc of radius 1/α that contains no other nodes in the network?” We show
that using only local communications our algorithm is provably correct. Boundary
nodes may further participate to reduce unwanted detail. We show via simulation
that our algorithm identifies meaningful boundaries even in networks of low-density
and non-uniform distribution.

Key words: wireless, sensor networks, boundary detection, alpha-shapes.

1 Introduction

Context-awareness is increasingly important in wireless and sensor networks.
When available, knowledge of position, nearby physical obstacles, or topolog-
ical features, can be exploited to provide better communication protocols and
deployment techniques in resource constrained environments.
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Intuitively, many pure sensing applications benefit from knowledge of network
boundaries ([2,3,8,12,18,21,22,26]). Nodes along the outer edge of the network,
for example, are assumed to be the best candidates for beacons in virtual co-
ordinate constructions. Here the assumption is that the finest resolution in
coordinates appear using a set of beacons that are furthest apart. Perceived
network edges also may bound holes in the network or other regions of in-
terest. Such regions may indicate physical boundaries or node failures due to
environmental effects, so that additional nodes may be deployed. In addition,
there are applications that benefit directly. KAT [20], whose success relies in
part on accurate knowledge of network boundaries, is one such example.

In this paper we solve the edge detection problem locally using a geometric
structure called the alpha-shape (α-shape) [5]. The α-shape is used to capture
the shape of a set of points in space, and is a generalisation of the convex hull.
In addition to geometry-related fields of study such as graphics and compu-
tational geometry, α-shapes have been used in molecular biology and particle
physics [6]. Alpha-shapes offer real world applicability. They may be weighted
to reflect degrees of accuracy relative to network positioning [4], and also ex-
tended to three-dimensions [6].

Its use is motivated by the hypothesis that within range of many nodes there
exists structural information relevant to the network. For a disc of radius 1/α,
the α-shape consists of nodes (and joining edges) that sit on the boundary of
the discs that contain no other nodes in the network. For this initial study we
restrict ourselves to network graphs with normalised communication range in
two-dimensions.

Our contribution, rather than to suggest a new method, is to identify wire-
less network boundaries by combining previously unrelated methods. It differs
from previous methods in that we investigate what might be achieved if rela-
tive information - positions of nodes relative to their neighbours - was known
or computable. First, each node constructs a local coordinate system. (Alpha-
shape computations are unaffected by translations and rotations in space.)
Next, each node computes the Delaunay triangulation of its neighbourhood to
find the corresponding α-shape. In the simplest terms a node decides it is on a
network boundary by asking the following question: “Do I sit on the boundary
of a disc of radius 1/α that contains no other nodes in the network?” Finally,
any boundary node may request a map of the boundary by transmitting a
discovery packet along edges of the α-shape using right-hand rule.

The key to localisation is to select the α-parameter appropriately. In the ver-
sion of the problem posed in this paper α is selected so that 1/α = 1/2R,
where R is the communication range. Given such an α, the α-shape derived
from local computations is provably correct. Even so, the α-shape may expose
some unwanted detail that we refine using either of two proposed methods.
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We show via simulation that our algorithm identifies meaningful boundaries
even in low-density networks. In addition to varying density, we vary topol-
ogy by generating networks where node locations are selected from uniform,
normal, and skewed (Pareto) distributions. We complete our evaluation with
a comparison of local α-shaping over dædal topologies presented in [24]. We
find that α-shaping produces similarly favourable results with fewer commu-
nications and fewer neighbours.

2 Related Work

Our work appears amid a growing body of research on boundary detection.
We focus on works that are distributed or localised. Existing work may be
classified according to the taxonomy presented in [24] as either geometric,
statistical, or topological in nature.

Geometric solutions to the boundary identification problem use the positions
associated with each node. Our work falls into this category. To our knowledge
the work by Fang et al. [7] is the first such work. In it the authors find those
nodes abutting any ‘hole’ in the network as defined by greedy routing tech-
niques. Their methods detect such nodes using local information. A network
node is found to abut a local minima if its neighbourhood reflects geometry as
defined by a tent-rule. Using the tent-rule, the detection of a boundary node
as defined by greedy routing it local; however, a probe is required to identify
all remaining nodes along the network edges. In [10] boundaries are identified
using a localised convex hull algorithm. Though heuristic in nature, it is found
to be resilient to position-estimation error.

Probability distributions underlying network deployments have been used to
formulate statistical solutions. One solution, proposed by Fekete et al. [11],
relies on the idea that nodes close to network boundaries have fewer incident
edges in the network graph than internal nodes. The authors use statistical
methods to derive suitable thresholds to separate edge nodes from internal
nodes using the node degrees. In [23] a similar statistical separation is pro-
posed. Boundary nodes are separated from internal nodes by using a ‘central-
ity’ measure which counts the number of shortest paths that pass through a
node. A higher centrality value occurs among internal nodes. Statistical solu-
tions generally hinge on uniformly distributed networks and exceedingly high
densities. Our method shares in the view that nodes at the boundary exhibit
unique characteristics. Unlike statistical methods, our approach is localised,
is shown to be resilient to the underlying distribution, and performs well in
lower densities environments.

Topological solutions appear in [13,17,21]. Kröller et al. propose a combinato-
rial approach in [17]. It is the only deterministic work of which we are aware to
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produce correct results without relying on the unit disc graph model (where
all communication ranges are normalised). This solution comes at a high cost:
It deals with complex combinatorial structures in a distributed manner. Rao
et al. [21] suggest a single-beacon broadcast solution with a total messaging
cost is similar to localised approaches such as ours. Their work begins with a
‘hello’ message from a single beacon located at least 1-hop from the network
edge. A node decides it is on the edge if it finds itself to be furthest from the
beacon amongst nodes in its 2-hop neighbourhood. Funke [13] later proposed
extensions to a similar idea. The idea relies on the observation that ‘rings’ of
the network, described by hop-distances to a beacon, are broken when encoun-
tered by a network boundary. This project was later refined by Funke et al.
in [14]. Wan et al. [24] use topological inference to detect internal boundaries.
Their detection method works by identifying the distinct portions of similar
paths that span the network.

Zhang et al. [25] provide a planarization of the network graph that requires
neither uniform communication range nor node locations. They propose a
progressive construction of trees and their arrangement as bipartite graphs. By
planarizing each bipartite graph recursively, the faces of network boundaries
emerge as a natural consequence. Finally, somewhat related is the contour
tracking project [27]. Here the authors identify the boundaries of a binary
event. A binary event may be, for example, a chemical concentration beyond
some threshold or a set of grouped targets. When tracking such events there
are ‘binary’ nodes, labelled black and white, with entire neighbourhoods either
inside or outside of the events, respectively’. Using limited scope broadcast it
is possible to identify the contour consisting of ‘grey-area’ nodes, nodes with
some black neighbours and some white.

3 Preliminaries

Our work exploits the properties of many well known geometric structures. In
advance of the presentation of the edge detection algorithm we present some
necessary definitions and background for completeness.

3.1 Definitions

Delaunay Triangulation. Given a set of points S the Delaunay triangu-
lation DTS is one that satisfies the ‘empty circle’ property, where no point
lies inside the circumcircle of any triangle in DTS. An example of a Delaunay
triangulation appears in Figure 1a. It is a super set of the convex hull as well
as the minimum spanning tree of S. The number of edges in the Delaunay
triangulation is on the order of the number of nodes (ie. |E| = O(|V |) for edge
set E and node set V ). Of its many properties we are most interested to its
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relationship to Voronoi Diagrams.

(a) Delaunay Triangulation (b) Voronoi Diagram

Fig. 1. The Delaunay triangulation of a set of points and its corresponding Voronoi
diagram.

Voronoi Diagrams. Given a set of points S the Voronoi diagram V DS par-
titions the space occupied by S into convex regions V (p) where, for each p in
S, any point in V (p) is closer to p than any other point in S. The Voronoi
diagram is the dual graph of the Delaunay triangulation. The Delaunay trian-
gulation may be used to compute the corresponding Voronoi diagram in linear
time. Referring to Figure 1 we can see both the Delaunay triangulation and
the Voronoi diagram for the same set of points.

3.2 α-Shapes

The α-shape provides the foundation of the work in this paper. It is derived
from the α-hull, which is a generalisation of the convex hull. To better un-
derstand α-shapes we restate the following definitions from the original work
in [5] in a manner that better suits our application, and follow with a discus-
sion using examples. Say that we have a set S of points in the plane.

(a) Convex Hull. (b) α-shape.

Fig. 2. The convex and α-shapes of a corresponding set of points.
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Definition 1 The α-hull is defined as the intersection of the complement of
all closed discs of radius 1/α that contain no points in S.

We are more interested in a related structure called the α-shape which first
requires the following definition.

Definition 2 A point p in S is said to be α-extreme if p lies on the boundary
of a closed disc of radius 1/α that contains no other points of S. Two such
points p and q that lie on boundary of the same disc are said to be α-neighbours.

Finally, we may define α-shapes as follows.

Definition 3 For a set S of points in the plane and α ≥ 0, the α-shape is
the graph whose vertices are α-extreme and whose straight line edges connect
α-neighbours.

Note that as α approaches zero the size of the disc approximates a halfplane.
At α = 0 the α-hull is identical to the convex hull.

The contrast between structures may be seen in Figure 2. The convex hull
of an example set of points appears in Figure 2a. Certainly the convex hull
of a wireless network is one way to define its boundary; unfortunately the
convex hull fails to reflect numerous features. Observe, for example, that the
curve along the upper-rightmost edge is hidden, as is the large circular gap
that appears in the lower-left. Furthermore edges of the convex hull, restricted
by range constraints inherent among wireless devices, may be impossible to
compute.

Using the same set of nodes we compare the α-shape shown in Figure 2b.
For demonstration the discs used to produce the α-shape appear using greyed
lines. Observe that the revealed shape more accurately reflects the shape of
the network (for proper selections of α). The α-shape closely follows variations
in the outer-edge. It also reveals the inner gaps. We note that the α-shape can
reveals inner as well as outer boundaries, a characteristic missing from the
convex hull.

The structures discussed above are well-known, well-studied, and have been
extended to 3-dimensions. The algorithm presented in the next section uses
these structures to a provide boundary detection localised for wireless and
sensor networks.
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4 Localised Boundary Detection Algorithm

We consider a deployment of a large sensor network where, initially, nodes
may lack any knowledge of their positions. We wish to identify, using only
local information, those nodes and links that lie on the network boundaries.
We propose a localised algorithm that makes only two assumptions. First,
that generated or assigned node IDs are unique within each neighbourhood;
second, that distance measurements are available should position information
be unknown.

Our method relies on the hypothesis that within the local view of each node
there exists some structural information relevant to the network. As discussed
in Section 3.2, it is well known that α-shapes, given a proper selection of the
α-parameter, reveals a set of nodes and edges that captures the shape of a set
of points in a geometric space. We first outline our algorithm and then discuss
each step in detail. The correctness of the algorithm is reserved for discussion
to Section 5.

(1) (Optional) Each node i constructs a local coordinate system consisting
of the nodes L(i) within communication range. Only relative positions
are required for the algorithm to succeed. This step is necessary only if
position information is unknown.

(2) Each node i for its neighbourhood L(i), constructs the Delaunay trian-
gulation DTL(i).

(3) Given communication range R, select the α-parameter so that the radius
r of the disc is r = 1

2
R. Identify ‘α-extreme nodes’ of L(i) as determined

by r. Each node ascertains its boundary status by asking, “Am I α-
extreme?”

(4) (Optional) A map of the boundary may be obtained by sending a dis-
covery packets according to right-hand rule along the edges joining α-
neighbours.

4.1 Establish a Local Coordinate System

In the first step each node constructs a local coordinate system so that the
αL-shape may be computed in the next steps. Though not the focus of this
work, we present this step for completeness. It is described for cases where no
a priori position information exist. Should position information be available,
this step becomes redundant and may be omitted.

Each node in the network, after announcing its presence, begins by shar-
ing with its immediate neighbours a vector of measured distances to 1-hop
neighbours. Once received, each node constructs a local coordinate system by
placing itself at the origin and, in a depth-first manner, assigns coordinates
to remaining neighbours relative to those whose local coordinates have been
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Fig. 3. Node u may generate a local coordinate system, if needed.

established. We demonstrate this idea from the perspective of node u in Fig-
ure 3. Node u places itself at the origin of a Cartesian space and sits neighbour
v on the horizontal axis. (For our purposes we use the furthest neighbour.)
The next node, w, may be placed on either side of the horizontal axis since
α-shape computations are resilient to rotations and translations. Remaining
nodes are placed similarly and with respect to established coordinates.

Clearly this approach is independent of under- and over-lying protocols. Still,
its weakness is its dependence on accurate measurement methods. The view-
point we take is that location-discovery technologies such as GPS will continue
to decrease in size and cost, rendering this argument moot.

Once nodes have discovered their positions relative to their neighbours, each
node proceeds to construct the Delaunay triangulation consisting of the nodes
in view.

4.2 Local Construction of the Delaunay Triangulation

Construction of the α-shape of a set of points in the plane begins with the
construction of their Delaunay triangulation. The communication range re-
stricts us to the unit Delaunay triangulation, where edges longer than the
communication range are omitted. Localised constructions of the unit Delau-
nay triangulation are known not to exist (see [1,15,19]). Despite this fact we
show in Section 5.1 that it suffices for our purposes to build only the Delaunay
triangulation of the local neighbourhood.

4.3 Boundary Recognition using Local α-shapes

In Step 3 each node i independently determines whether it sits on a network
boundary by computing its αL(i)-shape, the α-shape of its neighbourhood L(i).
Recall from Section 3.2 the definition of α-extreme. From the Delaunay trian-
gulation DTL(i) each node i finds α-extreme points in linear time as follows:
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a) Node p ∈ L(i) lies on the convex hull of L(i); this is the trivial case where
node p is α-extreme.

b) Node p ∈ L(i) is not on the convex hull of L(i); we consider the discs (ie.
circumcircles) as defined by the Delaunay triangulation of L(i). Recall
from Section 3.1 that the points q which define the convex region Vp

enclosing p in the Voronoi diagram, are the centers of the circumcircles
touching p in the Delaunay triangulation. Thus any p is α-extreme if
r ≤ dist(p, q) for any q ∈ Vp. (Edges between α-neighbours are similarly
identified.)

Finally, each node asks of itself if it is α-extreme. No node may declare any
other node as α-extreme. This restriction avoids many of the pitfalls that
plague other localised methods such as [16]. We show in Section 5 that this
decision constraint, in addition to our selection of α, is necessary for correct-
ness.

4.4 Mapping the Network Boundaries

We emphasise that, following Step 3, the ‘network’ has identified all of its
boundaries. Collectively, the information stored at alpha-extreme nodes con-
stitutes the α-shape of the network for 1/α = r. Still, it may be advantageous
to map the network boundaries. The α-shape, as a subgraph of the Delau-
nay triangulation, is a planar graph. This fact permits nodes to map network
boundaries by routing a discovery packet along edges joining α-neighbours
using the right-hand rule : Upon receipt of a discovery packet, an α-extreme
node forwards along the next edge in angular order.

The combination of right-hand rule over a planar network graph guarantees
the return of a discovery packet to its origin node. In the next section we show
that the local α-shape algorithm is correct for certain selections of α.

5 Algorithm Correctness

In this section we demonstrate the correctness of the local alpha-shape algo-
rithm. We show that when communication range is normalised, local compu-
tation is sufficient and reveals the same nodes and edges as if computation
was centralised.

5.1 Local Delaunay Triangulations Suffice

The α-shape of a set of points S may be found using their Delaunay tri-
angulation DT (S) and corresponding Voronoi diagram V D(S). We show by
example that, if the communication range is normalised, the events outside
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of communication range bear no affect on the correctness of local α-shape
computations.

(a) (b)

Fig. 4. (a) Local information is sufficient to find α-extreme nodes. (b) Point x in
the Voronoi diagram can be no closer to p despite node t outside of range.

We direct our reader to the example in Figure 4, which depicts a ‘before and
after’ scenario of a neighbourhood from the perspective of sensor node p. The
large circle represents p’s communication range; the greyed disc is the disc
used to find α-extreme nodes and edges; the straight lines represent Voronoi
diagrams. The Voronoi diagram computed by p is shown in Figure 4a. The
intersection x is the center of the circumcircle of prs and reveals that p is
α-extreme. We then add a node t just beyond p’s view in Figure 4b and show
how the Voronoi diagram would change if t was visible to p. Note that x is no
closer to p, so p remains alpha-extreme. Similar examples may be constructed
for any t outside of communication range.

The key to this observation is the bisector property of the Voronoi diagram
where any line or point between nodes p and q sits on the line that bisects the
space between the points. Next we show that it is possible to ascertain the
alpha-shape of the network, despite only local information and computation.

5.2 On the Proper Selection of Alpha

Generally speaking, the value of an α-shape rests in the selection of the α-
parameter. Edge detection is no different. We ask when, if ever, a locally
constructed α-shape might be identical to an α-shape that is constructed in
a centralised fashion. For a set of points S in the plane, let α(S) be the set of
nodes and edges collected from the centralised α-shape algorithm; similarly we
label the set of nodes and edges collected from local operations as described
in Section 4 as αl(S).

Theorem 4 The sets αl(S) and α(S) are identical sets.
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Proof. It suffices to consider only the edges in a set since, if any node differs,
there must be an edge that differs as well. If we assume that the two sets differ
then either or both of the following statements must be true:

a. An edge in α(S) fails to appear in αl(S).
b. An edge fails to appear in α(S) that appears in αl(S).

We show both statements to be false. The key is in the selection of α which,
in the unit disc graph, is selected so that the radius of the disc r = 1/2.
When finding the global α-shape and setting α so that r = 1/2, only Voronoi
neighbours (or their dual, Delaunay edges) whose distance is ≤ 1 may be
inserted into α(S). We can satisfy this restriction by searching UDel(S), the
Delaunay triangulation with edges greater than 1 unit removed. So, in α(S)
we have no edge greater than 1 and only edges whose endpoints sit on an
empty circumcircle with r = 1/2.

The reverse statement presents a greater challenge since there is no way to
construct UDel(S) locally [1,15,19]. Instead we can effectively find all edges
that join α-neighbours. Observe in Step 3 of our algorithm that any edge e
can only be inserted in αl(S) by endpoints of e. We label the endpoints u and
v. Node u has a complete view of its neighbourhood. This is sufficient infor-
mation to find incident circumcircles since its radius is set so that its diameter
matches the communication range. It is important to note that only incident
circumcircles are inserted into αl(S): Node u is prohibited from making de-
cisions on behalf of v or any other node in its neighbourhood. This idea is
demonstrated in Figure 5 in which node u can only insert edges that it knows
belong in αl(S). Finally, the argument is symmetric in that if u inserts uv
then v inserts vu. 2

Finally, we note that the localised α-hull algorithm is resilient to non-uniform
range so long as r = 1

2
Rmin, where Rmin is the minimum possible commu-

nication range for all nodes. Accurate boundaries emerge so long as Rmin is
sufficiently large to reflect a disc that is able to connect α-neighbours according
to Definition 2.

6 Refinement

The selection of disc radius r = 1/2R for communication range R guarantees
correctness. Our initial investigation shows that this selection of disc radius
exposes some unwanted detail, necessitating further refinement.

We present example misleading geometries in Figure 6. The quadrilaterals’
edges represent communicating nodes and boundaries as determined by local
α-shaping. The greyed discs used to establish the local α-shape have been
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Fig. 5. Node u may insert in αl(S)
only directed incident edges uv
and uy.

Fig. 6. Nodes in close proximity
may expose unwanted detail.
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(a) Local α-shape.
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(b) Actual α-shape.

Fig. 7. By setting r > 1
2R, the local α-shape may differ from the actual α-shape of

the network.

included for clarity. We can see that sets of nodes located in close proximity
may produce boundaries where, effectively, there is none. Unrefined, the local
α-shaping process produces boundaries such as those seen in Figure 8. We
provide two methods to further refine the α-shape should the default be too
fine-grained.

6.1 Increasing the Disc Radius

The first method we investigate is to increase the radius of the disc in Step 3.
The outcome is a shape that is more coarse. Under these circumstances the
relationship between the α-shapes generated in a local and in a centralised
fashion is unclear. The question remains open whether setting r > 1/2R, ie.
setting the disc diameter strictly greater than communication range, connects
local α-edges in a planar configuration amenable to a right-hand-rule mapping.
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Increasing the available information to multi-hop neighbourhoods fails to re-
solve the issue at question. This idea is demonstrated using Figure 7. Refer-
ring first to Figure 7a, we present a configuration where the disc diameter is
increased beyond the communication range R. Node v is out of the commu-
nication range of node u but, unbeknownst to u, inside the disc of radius r.
This means that he the segment of the α-shape that would appear if computed
centrally, shown in Figure 7b, fails to appear when computed locally.

Hence, by increasing the disc radius an alpha-node can successfully determine
whether it is located on the boundary; it is unclear if increasing the disc
diameter beyond the communication range allows a boundary node to correctly
communicate with all other nodes on the same boundary or how the local
and global α-shapes might differ. In the following section we present a more
effective refinement method.

6.2 Refinement by Omission

Alternatively, network boundaries may be further refined following Step 4 by
disregarding those boundaries found to be greater than some pre-determined
number of hops in length. Our measurements show that in all but the spars-
est networks tested, the length of most boundaries was found to be quite
small, measuring 10 or fewer hops. This observation is reinforced by previous
study( [9]).

Ultimately it is the need to identify boundary nodes versus edges that dictates
the refinement method. We present simulations in the next section to compare
both methods, and evaluate the local α-shaping process in general.

7 Simulation Results

In the previous section we presented a complete algorithm to identify network
boundaries without the need for broadcasting. Here we use a broad set of
simulations to evaluate the algorithm performance with respect to density
and distribution. We begin with a description of the networks tested.

7.1 Experimental Design

To evaluate the performance of the local α-shaping we simulate networks of
varying density, distribution, and topology. Network nodes are distributed in
a 200x200 unit space, each node with a fixed range of 8 units. We vary node
density by changing the network size. Note that by changing size instead of
communication range we can vary the density without affecting the maximum
network diameter. Network sizes are 3500, 2500, and 1500 nodes. (In the uni-
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form networks this results in average neighbourhood sizes of 1̃7, 12, and 7
nodes.) To obtain results unbiased by isolated nodes we tabulate and experi-
ment over the largest connected component of each network as described by
Table 1.

Table 1
Largest connected components in tested networks with 99% confidence intervals.

Initial Size of lcc

Network Size Uniform Normal Skewed

3500 3499.9 ± 0.2 3450.8 ± 5.3 3403.8 ± 12.3

2500 2499.8 ± 0.4 2433.8 ± 4.9 2382.2 ± 10.9

1500 1490.0 ± 7.5 1406.7 ± 7.7 1359.0 ± 12.9

Nodes locations are chosen from a normal or skewed (Pareto) distribution in
addition to the uniform distribution traditionally used to generate wireless
network topologies. Uniformly distributed networks may be sufficient to pro-
vide insight yet are poor representations of many real deployments. Normal
coordinates are generated with an average of 100 (the center) and a standard
deviation of 40. Skewed coordinates are chosen from the Pareto distribution
with scale parameter 1.0 and shape parameter 100.5.

7.2 Refinement Phases Compared

We begin our evaluations by comparing local alpha-shaping with and without
the refinement phases proposed in Section 6. The outcome of the unaltered
localised α-shape algorithm is presented in Figure 8. Small ‘empty’ pockets
appear in the densest networks, growing in number and size in the sparse
networks. The less than satisfactory results in Figures 8b and 8c stem from the
selected value of the α parameter. Recall that the localised algorithm reveals
the same boundaries as the global algorithm so long as the disc diameter is
restricted to the communication range. Despite this fact we explore the effect
of an increase in α in the first refinement method.

The first attempt at refinement appears in Figure 9 using the same networks
as in Figure 8. In these networks the α parameter has been increased by 10%
so that r = 1.10 ∗ 1

2
r. Few pockets appear in the denser networks shown in

Figures 9a and 9b; unfortunately, the improvement in the sparse network of
1500 nodes shown in Figure 9c, while apparent, is marginal at best. Also,
as discussed in Section 6.1, there is no guarantee that planar edges are found
when the disc diameter is increased beyond communication range. Routing and
mapping, then, becomes a challenge. Still, this approach provides the benefit
of remaining entirely local to each node, needing no added communication.

In Figure 10 we show the boundaries revealed by omitting long paths as dis-
cussed in Section 6.2. Using this approach, nodes forward a discovery packet
to their α-neighbours according to right-hand rule. In our simulations, pack-
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ets that return to their origin having travelled less than 15 hops are omitted
from contention. The improvement is clear. In all but the sparsest network,
our algorithm reveals a single network boundary. And in the sparse network
shown in Figure 10c only the largest empty regions remain. α-neighbours co-
operate to omit unlikely boundaries and produce the most accurate results.
The communication required is far less than is required for global broadcasts
in comparable methods. We apply this refinement in remaining simulations.

7.3 Distribution and Density of Sensors

In this set of simulations we alter the distribution of nodes in addition to
the network density. Distribution parameters are described in Section 7.1.
Normally distributed sensor nodes, intended to better approximate aerial de-
ployments, are shown in Figure 11; skewed sensor distributions, intended to
better approximate ground projectile deployment, are shown in Figure 12. In
all non-uniform simulations presented, α-shapes are shown refined using the
mapping method described in Section 6.2. The α-shaping method performs
well in all tested networks and, but for increasingly jagged boundaries, seems
relatively unaffected by density.

7.4 Additional Examples

Finally, we test local α-shaping using example networks featured in [24]. In
that study the authors produced favourable results using topological means
needing many network-wide communications. Neighbourhoods in their study
ranged from 18 to 22 nodes in size. Our method produced only slightly im-
proved boundaries, and can be seen in Figure 13. However, we emphasise that
local α-hull yields slightly more accurate results using far fewer communica-
tions and neighbourhoods ranging from 7 to 10 nodes. This is less than half
of the size of neighbourhoods in [23].

8 Conclusions and Future Work

In this paper we have developed an algorithm to identify nodes and links
along network boundaries. It is useful to place our work within the context of
previous methods.

Edge detection algorithms and protocols have demonstrated considerable po-
tential in the past. Such methods offer the benefit of relaxing the unit disc
model, and needing no position information a priori. However, the success of
previous methods has relied on the global cooperation of all sensor nodes in
the network. The level of cooperation often requires packets to record infor-
mation revealed over multiple broadcasts. This may be an unacceptable drain
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(a) 3500 nodes. (b) 2500 nodes. (c) 1500 nodes.

Fig. 8. Unrefined boundaries determined using local α-shapes; network sizes reflect
average neighbourhood sizes of 17, 12, and 7, respectively.

(a) 3500 nodes. (b) 2500 nodes. (c) 1500 nodes.

Fig. 9. Disc radius increased by 10%; network sizes reflect average neighbourhood
sizes of 17, 12, and 7, respectively.

(a) 3500 nodes. (b) 2500 nodes. (c) 1500 nodes.

Fig. 10. Boundaries are mapped and omitted if greater than 15 hops; network sizes
reflect average neighbourhood sizes of 17, 12, and 7, respectively.

in such an energy constrained environment where channel contention and col-
lision is at issue. Besides this fact a bootstrap node is sometimes assumed to
exist, generally at the center or at the edge of the network. The origin of these
nodes is unclear. This is restrictive behaviour: many networks, such as those
quickly deployed in an emergency, may be unable to tolerate delays in network
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(a) 3500 nodes. (b) 2500 nodes. (c) 1500 nodes.

Fig. 11. Results over networks with nodes distributed according to a normal distri-
bution.

(a) 3500 nodes. (b) 2500 nodes. (c) 1500 nodes.

Fig. 12. Results over networks with nodes distributed according to a skewed (Pareto)
distribution.

setup or proper placement of bootstrap nodes.

In contrast we assume that partial location information is available or obtain-
able. Specifically we investigate what might be achieved if relative informa-
tion - node positions relative to their neighbours - was known or computable.
From this standpoint we can investigate geometric options from which we
might otherwise be restricted. In this paper we have managed to detect net-
work boundaries by localising the α-shape algorithm; the centralised version
of which has been successful in capturing the shape of a set of points in many
disciplines. The key is to set α so that the disc in use has a diameter equal to
the communication range. Then each node may independently decide if it sits
on the α-shape of the network and find the correct incident edges. By using
our algorithm and selected α the collection of locally computed nodes and
edges provably matches the set of nodes and edges of the α-shape computed
centrally.

To validate our approach we tested the local α-shape algorithm in simulated
networks of varying density where nodes were distributed according to uni-
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(a) (b)

(c) (d) (e)

Fig. 13. Dædal examples featured in [24]. They include (a) a building floor plan
with 3420 nodes and average degree of 8; (b) a cubicle shaped office space with
6833 nodes and average degree of 7; (c) a happy face with 4050 nodes and average
degree 8; (d) a network with 3443 nodes and average degree of 8; (e) a spiral shape
with 5040 nodes and average degree of 10.

form, normal, and skewed distributions. We found the algorithm output could
be further refined if nodes mapped their boundaries by forwarding a discovery
packet according to right-hand-rule; boundaries exceeding some length could
be omitted from consideration.

Compared to results from previous studies the local α-shape algorithm per-
forms favourably. Presently, we are looking at statistical methods to resolve
inaccuracies associated with position estimation error.
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[1] F. Araújo, L. Rodrigues, Fast localized delaunay triangulation, Springer LCNS
Principles of Distributed Systems 3544/2005 (2005) 81–93.

18



[2] M. Ben-Chen, C. Gotsman, S. Gortler, Routing with guaranteed delivery
on virtual coordinates, in: Proceedings of the 18th Canadian Conference on
Computational Geometry (CCCG’06), 2006.

[3] Q. Cao, T. Abdelzaher, A scalable logical coordinates framework for routing
in wireless sensor networks, Proceedings of the 25th IEEE Real-Time Systems
Symposium (RTSS) (2004) 349–358.

[4] H. Edelsbrunner, Weighted alpha shapes, Tech. Rep. UIUCDCS-R-92-1760,
University of Illinois at Urbana-Champaign, Champaign, IL, USA (1992).

[5] H. Edelsbrunner, D. Kirkpatrick, R. Seidel, On the shape of a set of points in
the plane, Information Theory, IEEE Transactions on 29 (4) (1983) 551–559.
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