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A SIZE-BASED APPROACH TO AUTONOMOUS SYSTEMTOPOLOGY MODELINGMARWAN FAYEDBoston University Graduate Shool of Arts and Sienes, 2003Major Professors: John W. Byers, Assistant Professor of Computer SieneABSTRACTReent studies note that numerous strutural properties in the Internet's au-tonomous system (AS) graph follow highly variable distributions. The most studiedof these is the AS degree (number of peering links) distribution, it is a ruial prop-erty in the understanding of the Internet's evolution and struture. The dominantmodel for this phenomenon is the Barab�asi-Albert (B-A) model. Its entral feature,preferential onnetivity, requires eah AS to have global knowledge. This assump-tion of global knowledge may produe the underlying properties observed in the AStopology, but annot explain the reasons they emerge. This thesis explores a moregeneral explanation for the highly variable distributions observed, one where pref-erential onnetivity and global knowledge are absent. Spei�ally, we explore therelationship between AS size and degree distributions and the proesses by whihthey emerge.We present two size models: one inorporates only the growth of hosts and ASes,and a seond extends that model to inlude mergers of ASes. Our models are moti-vated by measurements of relatively unexplored data soures, as well as from novelheuristis applied to examinations of olletions of BGP tables. We show that thesemodels yield a size distribution exhibiting a power-law tail. Furthermore, in suh amodel, if an AS's link formation is roughly proportional to its size, then AS degreewill also show high variability. We instantiate suh a model with empirially derivedestimates of growth rates and show that the resulting degree distribution is in goodagreement with that of real AS graphs. iv
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Chapter 1
Introdution
Many aspets of the Internet's struture are relatively unknown. These gaps inour knowledge pose problems when attempting to onstrut representative networktopologies for simulation and modeling. In addition, �lling these gaps may shed lighton the fores behind the Internet's growth and the ways in whih the network mayfail.There are two widely studied views of the Internet orresponding to di�erent hi-erarhial levels of aggregation. The router-level topology, where we onsider onlythose mahines that are physially responsible for direting traÆ between soureand destination, o�ers the �ner-grained resolution of the Internet. Another view isobtained when looking at the granularity of autonomous systems (or ASes) that areresponsible for the administration of a olletion of these routers. For example, an av-erage university ampus might administer �ve or ten routers visibile on the Internet,while a large ISP (Internet Servie Provider) suh as Sprint or UUNet are responsiblefor the operation of hundreds or thousands of routers sattered geographially. Ofourse every router must be assoiated with some AS. However, at the AS level ofabstration router information is not available. In fat, most information regarding



2
the internal struture of the AS is hidden in this view.We an represent these views using labelled graphs. In the AS-level graph ver-ties represent ASes and edges represent AS-AS peering relationships, those linksestablished between ASes for the sake of global reahability. At the router-level,graph nodes are routers and edges are network links. A node's label orresponds tothe autonomous system to whih the node belongs. These abstrations provide anattrative target for Internet topology generation e�orts, beause they make possi-ble signi�ant improvements in network simulation. Properly labelled graphs wouldallow meaningful simulation of traÆ ow patterns, whih are inuened stronglyby interdomain routing poliies. Furthermore, aurate AS labelling would allowrealisti simulations of the BGP system, whih is of onsiderable urrent interest.Unfortunately, a number of gaps in our understanding prevent the onstrutionof suh labelled graphs. Prinipal among these is the urrent lak of existene of amodel for the evolution of the interdomain system. Suh a model should be able toanswer the questions: By what proesses do new ASes arise over time? How do ASesgrow? By what proesses do ASes merge? What determines the interonnetionproesses between ASes? In this thesis we seek answers to these questions. To do sowe use a variety of Internet measurements, supplemented with insight from analytimodels.A partiularly surprising aspet of these graphs is the prevalene of highly variabledistributions [16, 23℄, the most well-studied of whih is vertex degree. In disussingproperties of the AS graph, it is useful to draw a distintion between high variabilityand power-law tails. High variability is a qualitative notion, referring to a probabilitydistribution showing non-negligible values over a wide range of sales (typially atleast three orders of magnitude). On the other hand, a distribution p(�) with power-
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law tails has the formal property that:

p(x) � x��
with � > 0, and where a(x) � b(x) means that limx!1 a(x)=b(x) = .Some authors have argued that AS vertex degree is well modeled as having power-law tails [16, 23℄. Others have suggested that vertex degree does not learly exhibitpower-law tails, although it is highly variable [12℄. Sine suh highly-variable distri-butions do not arise in simple random graphs, and sine power-law tails do providea simple (albeit rude) approximation for the behavior of the true distribution, anumber of papers have proposed mehanisms (more ompliated than purely randomonnetion) that may give rise to power-law degree distributions in graphs [7, 22, 21℄.The most prominent model attempting to explain the emergene of power-lawdegree distributions is the Barab�asi-Albert model (or B-A model) [7, 2℄. In fat, ithas been onsidered in a number of papers as a model for AS graphs [3, 10, 29, 26, 35℄.The B-A model assumes the network is formed through inremental addition of nodes.In the simplest form of the model, a new node forms a onnetion to an existingnode with probability proportional to the existing node's degree. This preferentialonnetivity leads to a \rih get riher" phenomenon in whih high degree nodestend to inrease in degree faster than low degree nodes. Suh models have twodrawbaks. First, they require global knowledge of the onnetivity of all other nodesand seond, there is no allowane for inuenes other than proportion of degree whenhoosing neighbouring ASes. While they might be suessful in reproduing observedproperties of Internet graphs, they unlikely to be representative of the proessesresponsible for those properties.In this thesis we present work published in [18, 17℄ and examine whether explana-



4
tions more general than the B-A model may suÆe to explain highly variable degreedistributions in the AS graph. In trying to �nd suh explanations, we look to theevolution of ASes themselves. We are motivated by two observations. First, the au-thors in [14℄ point out that AS degree is strongly orrelated with AS size (measuredin number of nodes) | and that AS size also shows a highly variable distribution.Seond, we observe that during the last 10 years or so, the Internet has undergoneexponential growth in both number of nodes and number of ASes. Under suh ondi-tions, we show here that highly variable AS sizes (and, presumably as a onsequene,highly variable AS degrees) may readily arise due to exponential growth alone.We explore these observations in this thesis by �rst onstruting a simple growthmodel for ASes. Our model makes three assumptions: (1) exponential growth in thenumber of hosts in the network; (2) exponential growth in the number of ASes inthe network. In this model, (the total number of hosts) and N (the total numberof ASes) are desribed by the simple linear growth equations dN=dt = qN anddM=dt = pM + qN , where q and p are the growth parameters. We show that inthe asymptoti time limit, this model leads to a stationary size distribution withpower-law tails.The prinipal validation of this model is to hek whether its predited size distri-bution agrees with empirial measurements of AS size distributions. For this purposewe use two large router inventories, from the Merator and Skitter projets, and mapeah router to its assoiated AS. The resulting size distributions of ASes are foundto have long (though not learly power-law) tails. Agreement between the AS sizedistributions predited by the growth model and the data is a good �rst order approx-imation, but there are notieable disrepanies. For example, the tail of the modeldistribution is in general agreement with data, but it stritly follows a power-law,while the empirial data shows some deviation from a power-law tail.
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However, in the Internet there are events other than AS growth whih our. Wehypothesize that an important fator our simple model omits is the merger of ASes.Statistial mehanis shows that highly variable size distributions an also result fromoalesene proesses (as in the formation of raindrops or polymer aggregates [24℄).To understand the merger proess and estimate a orresponding rate, we develop aheuristi and apply it to examinations of BGP table olletions over two one-yearperiods. Adding mergers to our growth model ompliates the analysis onsiderably.Currently only the most tratable version of this model has been solved, in whihmergers our with a rate proportional to the number of ASes present, in a mannerindependent of the sizes of the ASes merging. In this version the new rate of growthin the number of ASes is desribed by dN=dt = (q � r)N , where r is the rate ofoalesene.This merger model exhibits improved agreement with data with respet to smallto medium sized ASes, but predits large AS sizes less well, ompared to the puregrowth model. More importantly, it points to the need for analysis and detetion ofmore realisti merger proesses (suh as those that aount for the relative sizes ofthe ASes being merged).We then return to study the impat of size on node degree and inter-AS on-netivity. This extension makes a third assumption in addition to those above, thatthere exists (3) an approximately proportional relationship between AS size and de-gree [14℄. The resulting model shows that highly variable AS degrees may easilyarise without preferential onnetivity, and in fat without any global knowledge ofnetwork state by individual ASes. Indeed, in our model, the methods by whih ASesselet peering partners an remain ompletely unspei�ed.We present a simple algorithm whih onstruts AS-AS peering links as the ASesgrow in size, over time. We show that, in an environment where the growth rate of
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hosts and ASes is exponential, random seletion proess suÆes to produe a highlyvariable degree distribution among ASes. To demonstrate the exibility of this modelan example is presented where we speify that the seletion proess onsider the sizeof the AS when deiding whether to insert new links.We onlude that, for topology generation, it is not neessary to inorporatepreferential onnetivity in order to generate highly variable AS degree distributions.This leaves the door open for more pratially justi�ed bases for forming inter-ASlinks, e.g., based on eonomi and geographial onsiderations.This thesis provides a growth model to onnet ASes. This model for the ASgraph is more general than the B-A model, and is based on empirial observationsof Internet growth dynamis. It allows for inter-AS onnetions to be formed in away that need not be based on AS degree, losing. We show that this model yieldshighly-variable degree distributions, and that its outputs agree well with empirialmeasurements of AS graph degree distribution.In addition, we show that growth based models are a good �rst step to under-standing the evolution of the sizes of ASes. Our model leads naturally to a methodfor labelled network topology generation in whih the topology grows inrementally,and as nodes are added, new ASes arise, and existing ASes grow and merge.



Chapter 2
Related Work
Until reently, Internet topologies have been generated using random and hierarhialmodels. Among the more signi�ant of these is work due to Calvert et al. in [11℄.That paper proposes generating smaller domain-like networks and onneting themtogether to reate a hierarhial struture whose properties are spei�ed by inputparameters. The goal in this work was to emulate the types of relationships thatexist on the Internet. Unfortunately, these random and hierarhial approahes failto apture many signi�ant attributes of Internet topology as well as the power-lawmodels [35, 26℄ disussed below.Sine attention was drawn to power-laws in Internet topologies by [16℄, modelinge�orts have shifted to reproduing these power-law properties. The most notablee�ort in this diretion has been the Barab�asi-Albert preferential attahmentmodel [7℄.In this model, the network is formed through inremental addition of nodes. Themodel's key assumption is that a new node forms onnetions to existing nodesbased the existing nodes' degrees. The probability that a new node will onnet toan existing node i is proportional to �(i) = ki=�jkj, where ki is the degree of node i.The resulting rate at whih nodes aquire new edges is given by Æki=Æt = ki=2t, where
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t is the time elapsed from the start of the proess. The resulting degree distributionexhibits a power-law tail, with a �xed exponent of � = �3.Later work has built upon and extended the B-A model. The same authors in [3℄extended the model to allow re-wiring, in whih edges may also be deleted or movedat eah timestep; this allows the exponent in the power law relationship to vary. Thework in [29℄ investigates the ase where only a subset of all nodes in the networkare available to hoose from. With only slight modi�ations to the B-A model theyshow that a power-law degree distribution emerges. Additionally, a \generalizedlinear preferene" model is proposed in [10℄ whih better mathes the lusteringbehavior and path lengths of empirial Internet measurements. These extensionshave improved the exibility of the B-A model, albeit with a orresponding inreasein omplexity.The generation of power-laws through random graph models has also reeivedonsiderable reent attention. An overview of existing models appears in [1℄, alongwith a single set of models whih generalizes them all. In this family of models,nodes are periodially added to the graph with some probability and are initiallyassigned an in-weight and out-weight of 1. At eah timestep, t, with some �xedprobability, a new direted edge is reated between nodes i and j. The probabilityof seleting an edge from i to j is in proportion to i's out-weight and j's in-weight,respetively. Then, the out-weight of i and the in-weight of j are inreased by 1;hene, at every timestep the total in-weight (or out-weight) in the system is exatlyt. This general method an generate graphs with arbitrary degree distributions, butare not proposed as realisti models for the dynamis of Internet growth.In ontrast to the approahes above whih fous on reproduing statistial prop-erties, another family of models explores the impliations of optimization goals onnetwork evolution. One suh model has been suggested in [15℄; it assumes that nodes
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arrive uniformly at random within some Eulidean spae, and the newly reated edgesattempt to balane the distane d from its new neighbour with the desire to minimizethe average number of hops h to other nodes. A new node i forms an edge to j byminimizing the weighted sum  �dij+hj. The resulting degree distribution exhibits apower-law tail. A seond optimization-based model is desribed in [4℄; this doumentexplores a similar heuristi but at the ISP level.The investigation in [14℄ evaluates the merits of the B-A model and its applia-bility to the Internet. The authors onlude that, while the B-A family of modelsdo sueed in produing power-laws, the model itself is not representative of thedynamis that drive Internet evolution: its growth proesses (preferential onne-tivity) do not math those observed in the Internet, nor does the requisite globalknowledge assumption hold. Also, they present evidene to suggest that AS-leveldegree distribution is not a pure power-law, though still highly variable. This on-lusion is drawn when attempting to build a more omplete Internet graph usingmultiple soures. Based on these observations, together with evidene in [34℄ whihlinks degree to size, [14℄ suggests that other (perhaps simpler) mehanisms deidethe evolution of the Internet.The work in this thesis shows that preferential onnetivity, or indeed any de-pendene on degree in making onnetion deisions, is not neessary in order forpower-law degree distributions to emerge. Furthermore, ours is the �rst model thatmodels highly variable degree distributions as well as the size and growth of au-tonomous systems themselves.



Chapter 3
Bakground
Before beginning a disussion of AS size distributions we provide a detailed desrip-tion of the data used (that we onsidered using). We also desribe the initial stepstaken to develop an understanding of AS growth and behaviour. The intuition weseek should help us to onstrut a model to desribe AS growth as seen in the Inter-net.In order to trak any entity in any study, some form of identi�ation is required.When seeking servies, in many ountries people are most easily identi�ed by a uniqueidenti�ation number (eg. soial seurity in the U.S.A.). Moreover, we also need tobe able to route information to individuals using a mailing address. The Internet'sanalogue to I.D. numbers and mailing address are routing numbers suh as IP or ASnumbers. Internet routing numbers are globally unique and so they an also be usedto identify entities as they appear online, move, or disappear.For the purpose of this disussion, we draw a distintion between the followingterms:

� IP: We use `IP', `IP bloks', `IP spae', and `IP pre�x' interhangeably torefer to sets of ontiguous IP addresses that are alloated to registrants on the
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Internet (Setion 3.1.1). These are alloated but not neessarily in use.

� Host: This term is used to refer to IPs that are atually in use on the Internet.Typially there is a 1:1 mapping of IP to physial mahine, but this is notalways the ase1. We sometimes refer to hosts as \live IPs" to reet theatual use of an IP address.
Following a omprehensive searh for and srutiny of data soures, we determinedthe most useful and aurate soures of information to be Internet Registrationssummaries [5, 6, 31℄, BGP tables, and a history of the number of hosts in the Internet(if available).We �rst disuss the data hosen and summarize its shortomings. Then we brieypresent our initial attempts to gain an intuition, with e�orts that followed in subse-quent hapters.

3.1 Publi Data Soures
3.1.1 Registry Summaries
Three registries are responsible for alloating globally unique routing numbers (IPand AS numbers) worldwide. The ageny RIPE is responsible for Europe and super-Sarahan Afria, APNIC for South-East Asia, and ARIN for the remainder of theworld.Eah of the registries keeps a history of all alloated routing numbers that ispublily available [6, 5, 31℄. This summary of alloations laks any ownership infor-mation, as an be seen in �gure 3.1. Eah entry is delimited by a vertial bar andan be deoded aording to the legend below.1For our purposes we say that multiple IPs assigned to host represents multiple hosts
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arin|CA|ipv4|216.254.128.0|24576|20000315|alloatedarin|US|ipv4|216.255.0.0|16384|20010416|alloatedarin|US|ipv4|216.255.64.0|8192|20010416|alloatedarin|US|ipv4|216.255.128.0|8192|20010430|alloatedarin|US|ipv4|216.255.192.0|4096|20010501|alloatedarin|US|ipv4|216.255.224.0|4096|20010501|alloatedarin|AU|ipv4|219.0.0.0|16777216|20011015|alloatedarin|AU|ipv4|220.0.0.0|16777216|20011203|alloatediana|US|ipv4|224.0.0.0|268435456|19910522|assignedarin|CH|asn|593|1|19900401|alloatedarin|DE|asn|575|1|19900401|alloatedarin|US|asn|257|1|19881122|alloatedarin|US|asn|296|1|19890608|alloatedarin|US|asn|149|1|19880104|alloatedarin|US|asn|85|1|19860910|alloatedarin|US|asn|133|1|19870919|alloatedarin|US|asn|713|1|19900823|alloatedarin|US|asn|218|1|19880729|alloatedarin|US|asn|522|1|19890825|alloated

Figure 3.1: A Typial Summary of Alloations
Registrar Country Code Type First RoutingNumber Range Date NotAppliableThe list is maintained by hand and is suseptible to human error. Nevertheless,it is the most aurate available reord of AS alloations. These summaries providevaluable information: namely, we an trae (a) AS number assignments, (b) assign-ments of IP bloks, and () the date on whih an assignment was made.

3.1.2 BGP Tables
In order to ommuniate amongst themselves, ASes need to know about eah other.They need to know whih ASes exist and how to route information to them. Routing
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BGP table version is 3626864, loal router ID is 198.32.162.100Status odes: s suppressed, d damped, h history, * valid, > best,i - internal Origin odes: i - IGP, e - EGP, ? - inompleteNetwork Next Hop Path* 3.0.0.0 195.211.29.254 5409 6667 209 701 80 i* 167.142.3.6 5056 701 80 i* 4.0.0.0 167.142.3.6 5056 1 e* 204.212.44.131 234 2914 1 i* 6.0.0.0 167.142.3.6 5056 7018 7170 1455 i* 195.211.29.254 5409 6667 209 7170 1455 i* 9.2.0.0/16 195.211.29.254 5409 6667 209 701 i*> 134.55.20.229 293 701 i* 9.3.4.0/24 195.211.29.254 5409 6667 209 3561 1221 ?* 134.55.20.229 293 1 16779 1221 ?

Figure 3.2: Sample (Condensed) Entries in a BGP Table, with Legend
and reahability information is passed around using BGP (BorderGatewayProtool)messages. As BGP messages travel through the network, routers build and storeevery valid path. Best paths are stored and hosen aording to some poliy.Referring to the sample BGP table entries in �gure 3.2, the information providedthat is relevant for our purposes onsists of the \Network" and \Path" olumns. TheNetwork olumn is the destination represented by longest mathing IP pre�x, whilethe Path olumn is a series of numbers. This series of numbers represents the pathin terms of AS numbers, from immediate neighbour to �nal destination.These tuples enable us to infer details suh as average path length, oalesene,and link reation at the AS level, among others. Unfortunately, BGP is very volatile [9℄and one must determine if snapshot information suÆes, or if long-term averages areneessary.
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3.1.3 Host History
A reord of the number of hosts in use on the Internet is diÆult to obtain. Thereasons for this are two-fold. First, the Internet is now owned and managed by privateentities unwilling to divulge details of their infrastruture. Seond, even if it werepossible, no entral reord of host ativity exists. Hene, studies to determine theInternet's size annot be validated, though we an aept them as useful estimates.Only two known projets have attempted to determine the growth of the Internetwith any suess: Telordia's Netsizer [30℄ is no longer available, hene we look toInternet Software Consortium's \Internet Domain Survey" [20℄. IDS host ounts arepublily available and have been produed semi-annually from January 1995, andquarterly from 1991-1995. Their ounts are derived from a reversal of the DomainName System's lookup proess, the result of whih is an approximate ount of IPaddresses in use. It is the best available reord of whih we are aware.
3.2 Building an Intuition
3.2.1 First Attempts
This step, for the most part, onsisted of data olletion and subsequent reorganiza-tion of the data into a usable format. What results are the plots in Figure 3.3. Theseplots show the umulative alloations of routing numbers over time on di�erent timesales. It should be noted that the (near) vertial line appearing in IP alloationsaround 1991-92 in Figure 3.3b) should be ignored as it represents an anomolousalloation (spei�ally the assignment of some 250 million multiast addresses).But what an we determine from these plots? Perhaps there is some relationshipthat is visible. Though we an see how these numbers have been handed out, it is
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Figure 3.3: Cumulative Alloations of a) AS numbers and b) bloks of IP addresses
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diÆult to draw any onlusions relating the number of ASes with the number ofhosts.To better understand, we next plotted the ratio of IP addresses per AS. Theresult is Figure 3.4. Again, the spike that appears about 1991 should be ignored forthe same same anomolous alloation mentioned above.While it may seem that there is some relationship to be inferred, we onludethat the use of IP alloations to determine host growth is misleading. There arefewer IPs handed to ASes over time simply beause more IP addresses are initiallyalloated than are neessary. This is to aomodate growth in a network withouthaving to repeatedly request more IP spae from the registries. Also, routing tablesizes an be redued by advertising larger ontiguous bloks of IP addresses.These �rst attempts only reinfored a belief that IP `spae' ould not be usedto aurately determine the information we desire. A true host ount surely wouldyield di�erent results, and surely a host ount did just that.
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3.2.2 Using Host Counts
It should now be apparent that a history of host appearanes on the Internet isimportant. After all, a building's oupany annot be determined by its apaity.Reall our two soures of information, Netsizer [30℄ and IDS [20℄, of whih host ountsonly from the latter are publily available.To better understand how IP addresses are assigned in relation to how they arealloated, we plot the ratio of HostsAlloated IPs in Figure 3.5. Note that, although thisratio is growing, only 0:08% of all IP spae is urrently in use. This only reinforesthe need for a good host ount.Returning to the desire to understand Internet proesses that are neessary tobuild a relevant model we plot �gure 3.6.Now we an see a more aurate representation of average AS growth. To belear, this plot shows the appearane of new hosts within an AS over time. Notie
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the line seems near-linear.But Figure 3.6 is skewed by astronomial notion of time. Hene we plot inFigure 3.7 the number of ASes in host-time, where events are appearanes of newhosts rather than passing of days and months. The linear relationship hinted at inthe previous plot is now only more apparent and gives us reason to proeed further.



Chapter 4
Construting a Simple Model
We motivate our model with observations on the growth of ASes and hosts overtime. Using AS number alloations olleted from the three Internet registries andestimates of the number of Internet hosts olleted from the Internet Domain Survey[20℄ , we plot the growth of ASes and Internet hosts over the last deade in Figure 4.1.As one might naturally expet, both plots give evidene of exponential growth.
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These observations provide starting points for our model.
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4.1 A Simple Model and its Analysis
We summarise the model provided in [18℄ onstruted using the observations maderegarding exponential growth.Let N(t) be the total number of ASes (`N ' stands for `number') and M(t) be thetotal number of hosts (`M ' stands for `mass') in the system. The simplest growthmodel onsistent with the observations above is mathematially desribed by linearequations dNdt = qN; dMdt = pM + qN: (4.1)
Here q is the rate of reation of new ASes and p is the rate of reation of newnodes. When a new AS is reated, the host is given that new label, explaining theqN term in Eq. (4.1). (For now, we shall assume that there is no merging of ASes;moreover, we assume that links do not a�et growth proesses and hosts and linksnever disappear.) Solving for N and M gives

N(t) = N(0) eqt; (4.2)M(t) = Aept +BN(t); (4.3)
with A;B being simple funtions of the initial data M(0); N(0) and the parametersp and q. At the speial point p = q the oeÆients diverge (A = B =1), reetingthat the exat solution is atually a linear ombination of ept and t ept. Thus theaverage AS size hsi �M(t)=N(t) ould in priniple exhibit the following asymptotibehaviors: hsi � 8>>><>>>:

finite when p < q,lnN when p = q,N (p�q)=q when p > q. (4.4)
We show later (Figure 4.3) that the average AS size grows over time (and with
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N), thus the inequality p > q must hold.Let Ns(t) be the number of ASes with s nodes. This size distribution satis�es therate equation1 dNsdt = p [(s� 1)Ns�1 � sNs℄ + qNÆs;1: (4.5)
We already know N(t) = N(0) eqt. Solving Eqs. (4.5) reursively and expressing interms of N rather than t yields

Ns = nsN + sXj=1CsjN�jp=q: (4.6)
The oeÆients Csj depend on initial onditions while ns are universal. Asymptoti-ally, only the linear term nsN matters. To determine this dominant ontribution,we insert Ns(t) = nsN(t) into Eq. (4.5). We arrive at the reursion relation s+ qp!ns = (s� 1)ns�1 (4.7)

for s � 2, while for s = 1 we reover n1 = q=(q+ p). A solution to reursion (4.7)reads
ns = qq + p �(s) � �2 + qp�� �s+ 1 + qp� : (4.8)

Asymptotially, the ratio of gamma funtions simpli�es to the power law,
ns � C s�� ; (4.9)

with � = 1 + q=p and C = qq+p � �2 + qp�.1In the large time limit, the random variables Ns(t) beome highly loalized around orrespond-ing average values.
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4.2 Estimating Growth Rates
In order for us to validate the proposed growth model, we �rst need to estimate theparameters p and q, the growth rate of the number of hosts and ASes, respetively.To estimate these rates, we explored a number of alternatives (detailed in Chap-ter 3) before seleting the methods we deemed most appropriate. For example, BGPtables appear to be a viable alternative for estimating both rates; however, logs onlydate bak to around 1997; moreover, not all IP addresses within a pre�x advertisedin a BGP pre�x are atually in use. The best available method seems to be to usethe publily available routing number alloations provided by the ARIN, RIPE, andAPNIC registries. Eah keeps a publi reord dating bak to the early 1980s of rout-ing number alloations whih inlude, among other details, the routing number andits type (IP or AS), the date on whih the number was alloated, the quantity (andin the ase of IP alloations, the starting address). It should be noted that RIPEdoes not publish AS number alloations, though many alloations to that region havebeen reorded by ARIN.From these tables we derived the plot of AS growth in Figure 4.1(a), and plottedagain on logsale in Figure 4.2(a). Here we assume that an AS typially omes intoexistene on the Internet shortly after it is alloated, thus the alloations provide agood estimate for q. Also reall that we are primarily interested in the overall rateof growth. Fitting this logsale plot to a line reveals that AS numbers are indeedalloated at an exponentially growing rate. We then estimate q by the slope of thelinear regression �t to the urve, or approximately 3:8 � 10�4.Estimating p, however, is more diÆult. As noted in Chapter 3, alloations ofIP addresses are made in bulk by Internet Registries; hene many more IP addressesare alloated than the number of IP addresses in use. The Registries' alloations
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statistis show that approximately 50% of IP addresses have been alloated and thatthe number of alloated IP addresses is growing muh less than exponentially, as anbe seen in Figure 3.3. We onjeture this trend does not result from the Internetgrowing less than exponentially, but rather from a growing tendeny to better managealloated IP spae.The Registries provide an exellent reord of AS births, but it is infeasible toreord IPs in use (and hene, reord births of hosts and routers on the Internet).The reords of host growth we onsidered were Telordia's Netsizer [30℄ (no longera publily available servie) and the widely ited Internet Software Consortium's\Internet Domain Survey" projet. The host ount they develop is based on a reverseDNS proess; details an be found at [20℄. We an be ertain that Registry IPalloation reords do not provide host growth statistis sine (using IDS numbers)usage of alloated IP spae has inreased from less than 1% in 1994 to 8% in 2002.Using the numbers published by IDS, we plot host growth in logarithmi sale inFigure 4.2(b). This plot seems to show a hange in slope around 1996. Using themore onservative growth rate, i.e. the best �t line of the urve following 1996, we�nd p to be about 4:8 � 10�4.
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We emphasize that while host ount may well underestimate the atual numberof hosts on the Internet, we are primarily interested in estimating the slope of theurve; our model is una�eted by saling fators.
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4.2.1 Analytial Validation
Our model also makes a very spei� predition on the relationship between N andM as the system evolves. From Eqn. 4.4, we expet

hsi �M(t)=N(t) � N(t)(p�q)=q;
i.e. M � N1+(p�q)=q. Indeed, we see lear evidene of a power-law �t between Mand N when we plot their relationship on log-log sale in Figure 4.3. The preditedslope is 1.26 and the slope of the linear regression is 0.56, so while the model is inthe right ballpark, some additional investigation is warranted.
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4.2.2 Empirial Validation
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Figure 4.4: Simple Model Preditions vs. Measurements
We �rst ompare the model's preditions using our estimates for p and q againstempirial data from 1999 and 2002 in Figure 4.4. Size distributions drawn usingMerator data in 1999, and Skitter data in 2002. The pdf is provided to show roughagreement in the body of the distribution, the log-log plot of the df shows thequality of the �t in the tail. We desribe our e�orts to improve the simple model'spreditive power and auray next.



Chapter 5
A More Complete Model

5.1 Modelling AS Mergers
The model desribed in Setion 4.1 is appealing beause of its simpliity, but failsto aount for a set of prominent events in our datasets | namely, mergers betweenpairs of ASes. In our datasets, we observe these mergers, or oalesene events, inour BGP logs when we witness one AS begin to advertise the set of IP addressesformerly advertised by another AS that then disappears. We provide our methodol-ogy for deteting these events in full detail in Setion 5.3.1. Coalesene markedlyimpats the manner in whih ASes grow, sine they enable an AS to grow by a mul-tipliative fator at a single timestep. In this hapter, we desribe how to augmentthe model to inorporate mergers, analyze the asymptoti behavior of the model andits preditions, and ompare the preditions to measurements derived from our datasets.Now, we shall take into aount the inrease of the total number of nodes, labels,and the merging between di�erent labels, using the same assumptions as before.Reall the notation introdued in Chapter 4. The model is now desribed by linear
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equations

dNdt = (q � r)N; dMdt = pM + qN:
The new parameter, r, is the rate of oalesene, i.e. the rate at whih two ASesdeide to merge. As before, solving for N and M gives di�erential equations:

N(t) = N0 e(q�r)t and M(t) = Aept +BN(t): (5.1)
Following the same analysis of asymptoti behavior as in Setion 4.1, and reasoningas before that the average AS size is large and growing, the inequality p > q�r musthold, whih implies hsi � N (p�q+r)=(q�r).
5.2 Impliations of the Model
Let Ns(t) be the number of ASes with s nodes. This size distribution satis�es therate equation dNsdt = p [(s� 1)Ns�1 � sNs℄ + qNÆs;1 (5.2)

+ rNK 8<: Xi+j=sKijNiNj � 2Ns 1Xj=1KsjNj9=; :
The �rst term on the right-hand side aounts for growth that proeeds with ratep: When a node is added to an AS with s � 1 nodes, the number of ASes with snodes inreases by one; similarly when a node is added to an AS with s nodes, thenumber of ASes with s nodes dereases by one. The next term on the right-handside of Eq. (5.2) aounts for nuleation, with rate q, of new ASes (of size one; onean also study more general situations, e.g., sizes of new ASes an be drawn from a
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distribution). The last term desribes oalesene that proeeds with rate r. Thisterm ontains a symmetri \kernel" Kij, the rate of merging between ASes with iand j nodes; K(t) = Pi;j�1KijNi(t)Nj(t) is the proper normalization fator.Our ongoing work fouses on identifying whih kernel most aurately reetsatual oalesene behavior. In what follows, we outline the derivation of the asymp-toti behavior of the simplest kernel (an exat analysis is provided in the appendix)and briey motivate a more general lass of kernels, whih we an also analyze.
5.2.1 Constant Kernel
Setting Kij = 1 transforms Eq. (5.2) into

dNsdt = p [(s� 1)Ns�1 � sNs℄ + qNÆs;1 (5.3)
+ rN 8<: Xi+j=sNiNj � 2NNs9=; :

Equations (5.3) an be solved reursively. For instane, the number of ASes of thesmallest possible size evolves aording to _N1 = qN � (p + 2r)N1. A solution tothis equation is a linear ombination of two exponents. Asymptotially, the solutionsimpli�es to N1(t) = n1N(t) with n1 = q=(p + q + r). Similarly, eah Ns(t) growslinearly with N . Writing Ns(t) = nsN(t); (5.4)
we reast Eq. (5.3) into the reursion relation

(q � r)ns = p [(s� 1)ns�1 � sns℄ + qÆs;1 (5.5)+ r Xi+j=sninj � 2rns:
Further disussion and analysis is available in [18℄.
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5.3 Estimating the Rate of Coalesene
Unfortunately, there is no obvious means of traking AS mergers on the Internet,sine we are not aware of any publily available reords providing this information.We therefore resort to making inferenes, spei�ally, by examining aggregated BGPtable arhives stored by RouteViews [32℄ at U. Oregon, NLANR and PCH sine1997. Our strategy is to to identify signatures of these merger events from ompar-isons of sets of daily BGP snapshots This strategy is ompliated by the presene ofonsiderable daily hurn [9℄, louding events of interest with substantial noise.We argue that aside from hurn, there are two reasons for an AS to disappearfrom daily BGP snapshots.
Coalesene: The IP pre�xes formerly advertised by one AS are now advertisedby a di�erent AS, and the former AS disappears from BGP tables.
Evaporation: The IP pre�xes formerly advertised by one AS simply disappearfrom the BGP tables.
Note that our methods annote detet AS mergers in whih the aquiring AS retainsuse of the aquired AS number as well as its own.To infer these two events, we �rst identify all \suspiious" events on onseutivedaily BGP snapshots. We de�ne a suspiious event to be either 1) the ourrene ofidential IP pre�xes advertised by two di�erent ASes on suessive days, or 2) an IPpre�x advertised by one AS on one day, followed by a day in whih that exat pre�xdoes not appear, moreover the longest mathing pre�x inluding the missing pre�xis advertised by a di�erent AS. Of ourse, many of these suspiious events are due tonormal BGP hurn and its attendant auses. Therefore, the remaining obstale is todistinguish an atual merger or disappearane from an instane of BGP hurn. It is
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diÆult to distinguish oalesene from evaporation using our methods, sine an ASwhose IP pre�xes evaporate into a larger blok of address spae is indistinguishablefrom an AS whih oaleses with the AS advertising the surrounding IP blok(s).
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The distinguishing harateristi we use is to onsider the duration of time thatthe AS assoiated with one or more suspiious events atually disappears from theBGP logs (our onern is that AS numbers are eventually reused). To determine anappropriate ut-o� threshold, we measured the duration it takes in days for an ASnumber to reappear after failing to advertise all of its IP bloks, using RouteViews'BGP tables spanning 01/02/2000 - 11/29/2000, and 02/20/2001 - 02/28/2002. Fig-ure 5.1 presents histograms (bin width = 5 days) of the time taken for an AS numberto re-appear one it has relinquished its IP spae. For larity, we remove the �rstbin, whih learly orresponds to BGP hurn and onstitutes the overwhelming ma-jority of disappearanes. In total, 89% and 79% of ASes reappeared in the 2000 and2001 datasets, respetively, and the majority of these returned within a few days ofdisappearing. For this reason we feel it is reasonable to assume that beyond a uto�of between three months to a year, the suspiious event is not due to hurn. Wereord a suspiious event as a merger when,
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� there is a handover of IP spae as disussed above, and
� the AS number losing IP pre�xes then disappears, and
� the AS number does not return in the observed interval.Applying this analysis to the BGP data allows us to measure the quantities neededto estimate r: L(t) is the total number of ASes present in the tables at time t; andC(t) is the total number of ASes that have merged into another AS by time t. Then,using Eqn. (5.1),

L(t) � e(q�r)t � (L(t) + C(t))=ertL(t)=(L(t) + C(t)) � e�rt
5.3.1 Validation of the Merger Model
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In Figure 5.2 we plot L(t)=(L(t) + C(t) on semi-log axes, yielding an estimater � 1:8 � 10�4. Solving for ns in Equation 5.5 allows us to summarize the size
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distribution predited by the oalesene model in Figure 5.3. As before, only a �twith the body an be seen from the pdf, so a log-log df is provided. Overall, whilewe �nd that the merger model is more aurate than the simple model in preditingthe distribution of small to medium-sized ASes, it still does not give an auratepredition of large ASes in the tail of the distribution. More work is neessary toinvestigate the nature of the kernel in a merger whih we hope will allow us to betterharaterise merger events.
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Figure 5.3: Coalesene Model Preditions vs. Measurements
Having disussed in detail two models to desribe AS growth proesses, we nowturn our attention to the inuene these proesses exhibit upon the strutural devel-opment of inter-AS struture, spei�ally with respet to AS degree.



Chapter 6
AS Degree Formation
The previous setion showed that a power-law size distribution emerges in the pres-ene of exponential growth of ASes and hosts. In this setion we extend that idea toinorporate AS degree.The key assumption we make is that as an AS grows, it will establish links withother ASes. In this setion, we show that if link formation ours in rough proportionto an AS's growth, then AS degree distribution will show high variability. Morepreisely, if eah time a new node is added to an AS it forms an inter-AS link to someother randomly hosen AS with some �xed probability, then AS degree distributionwill show high variability. Furthermore, this need only be in \rough proportion;" forexample, we show in Setion 7.3 that the result still holds if onnetion probabilityvaries with the log of the AS size.Any suh link formation proess is simple sine it only depends on growth, it isexible sine there are no inuening agents other than size, and no global knowledgeof other AS degrees is required to make link formation deisions. In fat, no globalknowledge of any kind is required.The simplest interonnetion proess is detailed in the algorithm below. Reall
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the notation from Setion 4.1 where t is time and N(t) is the number of ASes in thesystem. LetMi(t) be the mass of AS i, ti be the time AS i is inserted into the system,and x be some �xed probability. At eah timestep t two kinds of events our: somenew ASes are born, and existing ASes grow. Starting at t = 1:

i. Calulate the total number of ASes aording to N(t) = eqt.
ii. Insert bN(t)�bN(t�1) new ASes with a size of 1 and out-degree of 1, wherethe neighboring AS is hosen uniformly at random.
iii. Calulate the number of total routers within AS i aording to Mi(t) = ep(t�ti).
iv. For eah AS i, insert bMi(t)�bMi(t�1) new routers. Eah new router reatesan inter-AS edge with probability x, and if an edege is reated, then invoke aselet operation to determine to whom the new AS-to-AS link is reated.
The selet operation is left unspei�ed to emphasize the exibility of the linkformation proess and its dependene only on the AS size. We onsider only thesimplest seletion operation, where a target AS is hosen uniformly at random.Even though this is a random onnetion proess, ASes that are larger in size willalso have higher degree. Thus, the degree distribution that results should be highlyvariable. We show in the following setions that a highly variable degree distributiondoes result, and that this distribution �ts well when ompared against distributionsobserved in the Internet.



Chapter 7
Validation
We validate our analysis and simulation results against empirial degree distributionsin the following setions.
7.1 Empirial Data Soures
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Figure 7.1: Degree Distributions Inferred from 4 Soures.
Before we an disuss our model's inuene on inter-AS onnetivity, and the
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validity of the results, we �rst disuss the empirial observations themselves. Thereare a number of soures from whih we an draw AS-level degree distribution. Weinfer empirial degree distribution through two distint methods, applied to threedi�erent soures.
7.1.1 BGP Adjaeny
The �rst method is to infer AS degrees from BGP tables. For this purpose we useBGP tables from the RouteViews projet [32℄ olleted in April 2001 and February2002. Reall from Setion 3.1.2 that an entry in a BGP table onsists of an IP blokrepresented by its pre�x, followed by a sequene of ASes (an AS path) that must betraversed to reah an IP address within that range. We an infer an adjaeny inthe AS-level graph for a pair of ASes whenever they appear in suession within anypath.While this inferene method typially avoids false positives (adjaenies whihare not atually present, but appear to be present), it su�ers from false negatives,sine not all AS adjaenies are advertised aross BGP [14℄.
7.1.2 AS Overlays
A seond method for determining AS degrees is to annotate a router-level map witheah router's assoiated autonomous system. Nodes in the router-level graph arelabeled using IP addresses. In the overlay produed by annotating the router-levelgraph, eah node is further labeled with its assoiated AS. The approah is detailedin [13℄; we summarize the approah here. An IP is assoiated with an autonomoussystem by performing a lookup in BGP tables (arhived from the same time period inwhih the router-level map was olleted). First, �nd the longest mathing pre�x of
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an IP address within the BGP table; the last entry in the path vetor is the numberof the AS whih owns that IP address. A omplete inspetion of every edge in theannotated router-level graph reveals an inter-AS edge wherever any pair of nodes arelabeled with distint AS numbers.This method has numerous advantages over AS maps inferred from BGP tablesdiretly. It provides an AS map at a �ner granularity; aggregated ASes are revealedas are multiple links between ASes. However, this method su�ers from the followingdrawbak. Any single BGP table is potentially inomplete and an be limited bypath hiding from parent ASes (in order to redue message and table sizes). Sets ofBGP tables are used to redue the magnitude of this problem, with the belief thatmore BGP tables reveal more information. However, no AS an observe the existeneof another AS whih is hidden by its parents.We draw on router-level maps gathered from the Merator projet [19℄ in August2001, and another provided by the Skitter projet [33℄ gathered in January 2002.
7.1.3 Summary of Empirial Observations
Statistis, dates, and soures of all datasets drawn from RouteViews, Merator, andSkitter are summarized in Table 7.1.3.

Soure ASes Edges Date MethodRoute Views 10854 47847 04/01 BGP AdjaeniesRoute Views 12875 57385 02/02 BGP AdjaeniesMerator 3478 13590 08/01 AS OverlaySkitter 9206 38334 01/02 AS OverlayTable 7.1: Summary of Data Soures
The degree distributions plotted in Figure 7.1 show that all methods and soures
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yield similar results. For subsequent omparisons, we use the distribution drawnfrom the autonomous system overlay onstruted using the Skitter dataset olletedin January 2002 as a baseline for omparison against simulation results.
7.2 Constant Connetivity Models
Setion 4.1 showed that the size distribution that results from our model has a power-law tail. However, sine the growth model does not diretly desribe degree, we turnto simulation to determine the inuene of size and growth of the simple model ondegree.The simulation is exeuted using the algorithm in Setion 6 using rates p =1:1 � 10�3 and q = 8:7 � 10�4 estimated in Chapter 4.2.2. The degree distributionpredited by our model is plotted against observed degree distributions in Figure 7.2.We found empirially that using �xed probability x = 0:10 results in verties ofour simulated graphs having a roughly ommensurate average degree to that of theSkitter dataset. Where the disrepany does our, the general trend is a tendenyfor our model to underestimate the degree of small to medium sized ASes, whileoverestimating the degree of larger ASes.Figure 7.2 shows that the predited degree distribution is similar to that of theSkitter dataset. Disrepanies an potentially be removed by re�ning the deisionproesses used to form AS to AS onnetions in the model. In the following setion,we explore a re�ned model whih aounts for the size of the AS when determiningthe relationship between growth and link formation.
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Figure 7.2: Predited Degree Distribution where x = 0:10
7.3 Size-Based Connetivity Models
The previous setion shows that link formation ouring with onstant probabilityduring growth, while reasonable, ould be more aurate. The relationship betweenprediited and empirial distributions shown in Figure 7.2 suggest that there is roomfor other pratial inuenes on inter-AS link formation. Here we demonstrate theexibility of our model by disussing an approah that takes into aount the atualsize of the AS when hoosing to reate new links.We presuppose the following notion: as an AS grows, the ratio between its degreeand its size will shrink, and so a onstant probability when deiding to reate newlinks may not best relate degree to size. Intuitively, the ratio between the degree ofan AS and its size is analogous to the notion of a surfae-to-volume ratio. In graph-theoreti terms, this ratio is often referred to as the ondutane of a subgraph.
De�nition 1 The ondutane of an autonomous system i with size (mass) Mi andout-degree di is diMi .
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Observations of ondutane are estimated from Merator and Skitter datasetsdisussed in Setion 7.1, and shown in Table 7.3. This table shows that as an au-tonomous system grows, the average ondutane shrinks. While the atual ondu-tane of ASes of a given size varies onsiderably, this trend holds on average. Notethat ASes of size 1 are exluded from the smallest range sine an AS of size 1 musthave ondutane of at least 1, and so may bias observations. Also, average on-dutane in the largest ASes appear to break this trend. This may be an artifat ofnoise from a small number of data points.

Data Points Average CondutaneSize Range Merator Skitter Merator Skitter2� 10 1404 4254 0.492 0.86611� 100 1429 3502 0.242 0.596101� 1000 359 1050 0.134 0.3131001� 10000 38 131 0.108 0.21310001� 100000 1 10 0.20 0.249Table 7.2: Condutane of ASes
We believe that this derease in ondutane is natural, driven by the dereasingneessity to add inter-AS links as an AS grows. For example, as previously mentioned,an AS of size 1 must have a minimum degree of 1 (otherwise it is not onneted toother ASes, and hene annot be a part of the AS-level map). We speulate thatit is more often the ase that routers are added to a losed network to inrease theapaity and range of the network itself, rather than to onnet to other ASes, andso a onnetion probability that dereases as an AS grows is reasonable.The ratios and ranges in Table 7.3 show diminishing ondutane as AS sizeinreases. To better �t the data observed in Table 7.3, we applied a logarithmiorretion fator to implement a \diminishing probability" funtion, L. This funtiontakes the size of the autonomous systemMi, and a �xed probability x as parameters,
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and returns a probability value:

L(x;Mi) = 8<:x; when Mi < 10,xlog10(Mi) ; otherwise. (7.1)
As before, we use the simple selet operation whih returns a neighboring AShosen uniformly at random. One point of interest is that L governs only those ASeswhere size � 10, otherwise the probability of onneting to another AS is arti�iallyinated for the smallest ASes.
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Figure 7.3: Diminishing Probability where x = 0:20.
The distribution that results when applying the diminishing probability funtionis plotted against Skitter data in Figure 7.3, using x = 0:20, the value providing thebest �t. The two urves are nearly idential, sharing a similar slope, and are virtuallyindistinguishable throughout the entire body of the distribution.



Chapter 8
Conlusion
Understanding the dynamis of AS size distribution is important both for modelingpurposes and understanding onnetivity. In this thesis we have proposed two modelsfor the evolution of the AS size distribution. We further explored a model for howhighly variable degree distributions may arise in the AS graph as a result of theevolution of AS size.First, we have provided and analyzed a growth model with rate equations. Wehave disussed methods for estimating the parameters of this model and shown thesize distribution of ASes that it predits. The model's preditions exhibit size dis-tributions that are in general agreement with empirial data, both in the body andthe tail of the distribution. However, disrepanies exist between model and data,partiularly in the shape of the tail.Seond, we have suggested that it is important to inorporate the merging ofASes in our models. We show how to do so, and speify the resulting rate equation.The details of this model are highly dependent on assumptions about the manner inwhih ASes merge, whih is aptured in the merging kernel { the likelihood that twoASes of given sizes will merge at any timestep. We solve this model for the onstant
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kernel, and show how to estimate the assoiated parameters. The results point tothe need for further analysis of the proesses by whih ASes merge.Lastly, we extended the growth model to onnet AS nodes. We believe this isthe �rst suh size based Internet model for AS-labelled graphs. It is instrutive toompare this model with the B-A model.Like the B-A model, we assume that high variability has arisen via a \rih getriher" phenomenon resulting from an exponential growth proess. However the B-A model assumes preferential onnetivity, meaning that new nodes probabilistiallyprefer to onnet to well-onneted existing nodes. Besides requiring that eah AS beaware of the degree of eah other AS (a strong assumption of global knowledge), theB-A model strongly onstrains the resulting onnetion pattern. This is restritive; asdisussed in [28℄, many graph realizations are onsistent with a given degree sequene,and di�erent realizations may have very di�erent properties. In fat, [27℄ shows thatthe AS graph exhibits a high degree of lustering, an e�et that is not aptured bythe partiular onnetion pattern reated by the B-A model.In ontrast, the assumption in our model is that AS sizes are the underlying auseof high variability, and that a large AS will naturally tend to have a large degree.From this standpoint, our model allows for a muh wider range of onnetion patternsthan the B-A model, sine the degree of an AS grows as a funtion of its size, butthe hoie of whih AS to onnet to an be spei�ed independently, as a separateseletion operation. In this thesis we have explored the seletion operation in whihgrowing ASes hoose peering partners uniformly at random; however we expet thatany hoie of peering partners that is made without regard to degree (and inludingthose that exhibit a high degree of lustering) will likely show harateristi highvariability.Our results demonstrate that a simple and natural model inorporating exponen-
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tial growth alone is suÆient to drive both a highly variable AS size distribution anda highly variable AS degree distribution. We motivated this model with datasetsthat demonstrate exponential growth both in the number of hosts and the number ofASes, and validated the model by omparing the degree distribution our model pre-dits against observed degree distributions drawn from BGP tables and AS overlaymaps. We also provide an analysis of the power-law tail of the AS size distributionthat results when our methods are employed.We have integrated this model into the publily available BRITE [8, 25℄ topologygeneration framework. In future work, one might investigate seletion operations thatinorporate real-world onsiderations suh as loality, lustering and performaneoptimization, to provide an even more realisti AS growth model. As part of thise�ort, better mining tehniques of AS time-series data extrated from BGP logs areneessary to better understand the underlying nature of AS growth, interonnetionand merging over time [18℄. We hope this model is the �rst in a line of more exiblesize-based approahes to Internet modelling.
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