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A SIZE-BASED APPROACH TO AUTONOMOUS SYSTEMTOPOLOGY MODELINGMARWAN FAYEDBoston University Graduate S
hool of Arts and S
ien
es, 2003Major Professors: John W. Byers, Assistant Professor of Computer S
ien
eABSTRACTRe
ent studies note that numerous stru
tural properties in the Internet's au-tonomous system (AS) graph follow highly variable distributions. The most studiedof these is the AS degree (number of peering links) distribution, it is a 
ru
ial prop-erty in the understanding of the Internet's evolution and stru
ture. The dominantmodel for this phenomenon is the Barab�asi-Albert (B-A) model. Its 
entral feature,preferential 
onne
tivity, requires ea
h AS to have global knowledge. This assump-tion of global knowledge may produ
e the underlying properties observed in the AStopology, but 
annot explain the reasons they emerge. This thesis explores a moregeneral explanation for the highly variable distributions observed, one where pref-erential 
onne
tivity and global knowledge are absent. Spe
i�
ally, we explore therelationship between AS size and degree distributions and the pro
esses by whi
hthey emerge.We present two size models: one in
orporates only the growth of hosts and ASes,and a se
ond extends that model to in
lude mergers of ASes. Our models are moti-vated by measurements of relatively unexplored data sour
es, as well as from novelheuristi
s applied to examinations of 
olle
tions of BGP tables. We show that thesemodels yield a size distribution exhibiting a power-law tail. Furthermore, in su
h amodel, if an AS's link formation is roughly proportional to its size, then AS degreewill also show high variability. We instantiate su
h a model with empiri
ally derivedestimates of growth rates and show that the resulting degree distribution is in goodagreement with that of real AS graphs. iv
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Chapter 1
Introdu
tion
Many aspe
ts of the Internet's stru
ture are relatively unknown. These gaps inour knowledge pose problems when attempting to 
onstru
t representative networktopologies for simulation and modeling. In addition, �lling these gaps may shed lighton the for
es behind the Internet's growth and the ways in whi
h the network mayfail.There are two widely studied views of the Internet 
orresponding to di�erent hi-erar
hi
al levels of aggregation. The router-level topology, where we 
onsider onlythose ma
hines that are physi
ally responsible for dire
ting traÆ
 between sour
eand destination, o�ers the �ner-grained resolution of the Internet. Another view isobtained when looking at the granularity of autonomous systems (or ASes) that areresponsible for the administration of a 
olle
tion of these routers. For example, an av-erage university 
ampus might administer �ve or ten routers visibile on the Internet,while a large ISP (Internet Servi
e Provider) su
h as Sprint or UUNet are responsiblefor the operation of hundreds or thousands of routers s
attered geographi
ally. Of
ourse every router must be asso
iated with some AS. However, at the AS level ofabstra
tion router information is not available. In fa
t, most information regarding
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the internal stru
ture of the AS is hidden in this view.We 
an represent these views using labelled graphs. In the AS-level graph ver-ti
es represent ASes and edges represent AS-AS peering relationships, those linksestablished between ASes for the sake of global rea
hability. At the router-level,graph nodes are routers and edges are network links. A node's label 
orresponds tothe autonomous system to whi
h the node belongs. These abstra
tions provide anattra
tive target for Internet topology generation e�orts, be
ause they make possi-ble signi�
ant improvements in network simulation. Properly labelled graphs wouldallow meaningful simulation of traÆ
 
ow patterns, whi
h are in
uen
ed stronglyby interdomain routing poli
ies. Furthermore, a

urate AS labelling would allowrealisti
 simulations of the BGP system, whi
h is of 
onsiderable 
urrent interest.Unfortunately, a number of gaps in our understanding prevent the 
onstru
tionof su
h labelled graphs. Prin
ipal among these is the 
urrent la
k of existen
e of amodel for the evolution of the interdomain system. Su
h a model should be able toanswer the questions: By what pro
esses do new ASes arise over time? How do ASesgrow? By what pro
esses do ASes merge? What determines the inter
onne
tionpro
esses between ASes? In this thesis we seek answers to these questions. To do sowe use a variety of Internet measurements, supplemented with insight from analyti
models.A parti
ularly surprising aspe
t of these graphs is the prevalen
e of highly variabledistributions [16, 23℄, the most well-studied of whi
h is vertex degree. In dis
ussingproperties of the AS graph, it is useful to draw a distin
tion between high variabilityand power-law tails. High variability is a qualitative notion, referring to a probabilitydistribution showing non-negligible values over a wide range of s
ales (typi
ally atleast three orders of magnitude). On the other hand, a distribution p(�) with power-
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law tails has the formal property that:

p(x) � x��
with � > 0, and where a(x) � b(x) means that limx!1 a(x)=b(x) = 
.Some authors have argued that AS vertex degree is well modeled as having power-law tails [16, 23℄. Others have suggested that vertex degree does not 
learly exhibitpower-law tails, although it is highly variable [12℄. Sin
e su
h highly-variable distri-butions do not arise in simple random graphs, and sin
e power-law tails do providea simple (albeit 
rude) approximation for the behavior of the true distribution, anumber of papers have proposed me
hanisms (more 
ompli
ated than purely random
onne
tion) that may give rise to power-law degree distributions in graphs [7, 22, 21℄.The most prominent model attempting to explain the emergen
e of power-lawdegree distributions is the Barab�asi-Albert model (or B-A model) [7, 2℄. In fa
t, ithas been 
onsidered in a number of papers as a model for AS graphs [3, 10, 29, 26, 35℄.The B-A model assumes the network is formed through in
remental addition of nodes.In the simplest form of the model, a new node forms a 
onne
tion to an existingnode with probability proportional to the existing node's degree. This preferential
onne
tivity leads to a \ri
h get ri
her" phenomenon in whi
h high degree nodestend to in
rease in degree faster than low degree nodes. Su
h models have twodrawba
ks. First, they require global knowledge of the 
onne
tivity of all other nodesand se
ond, there is no allowan
e for in
uen
es other than proportion of degree when
hoosing neighbouring ASes. While they might be su

essful in reprodu
ing observedproperties of Internet graphs, they unlikely to be representative of the pro
essesresponsible for those properties.In this thesis we present work published in [18, 17℄ and examine whether explana-
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tions more general than the B-A model may suÆ
e to explain highly variable degreedistributions in the AS graph. In trying to �nd su
h explanations, we look to theevolution of ASes themselves. We are motivated by two observations. First, the au-thors in [14℄ point out that AS degree is strongly 
orrelated with AS size (measuredin number of nodes) | and that AS size also shows a highly variable distribution.Se
ond, we observe that during the last 10 years or so, the Internet has undergoneexponential growth in both number of nodes and number of ASes. Under su
h 
ondi-tions, we show here that highly variable AS sizes (and, presumably as a 
onsequen
e,highly variable AS degrees) may readily arise due to exponential growth alone.We explore these observations in this thesis by �rst 
onstru
ting a simple growthmodel for ASes. Our model makes three assumptions: (1) exponential growth in thenumber of hosts in the network; (2) exponential growth in the number of ASes inthe network. In this model, (the total number of hosts) and N (the total numberof ASes) are des
ribed by the simple linear growth equations dN=dt = qN anddM=dt = pM + qN , where q and p are the growth parameters. We show that inthe asymptoti
 time limit, this model leads to a stationary size distribution withpower-law tails.The prin
ipal validation of this model is to 
he
k whether its predi
ted size distri-bution agrees with empiri
al measurements of AS size distributions. For this purposewe use two large router inventories, from the Mer
ator and Skitter proje
ts, and mapea
h router to its asso
iated AS. The resulting size distributions of ASes are foundto have long (though not 
learly power-law) tails. Agreement between the AS sizedistributions predi
ted by the growth model and the data is a good �rst order approx-imation, but there are noti
eable dis
repan
ies. For example, the tail of the modeldistribution is in general agreement with data, but it stri
tly follows a power-law,while the empiri
al data shows some deviation from a power-law tail.
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However, in the Internet there are events other than AS growth whi
h o

ur. Wehypothesize that an important fa
tor our simple model omits is the merger of ASes.Statisti
al me
hani
s shows that highly variable size distributions 
an also result from
oales
en
e pro
esses (as in the formation of raindrops or polymer aggregates [24℄).To understand the merger pro
ess and estimate a 
orresponding rate, we develop aheuristi
 and apply it to examinations of BGP table 
olle
tions over two one-yearperiods. Adding mergers to our growth model 
ompli
ates the analysis 
onsiderably.Currently only the most tra
table version of this model has been solved, in whi
hmergers o

ur with a rate proportional to the number of ASes present, in a mannerindependent of the sizes of the ASes merging. In this version the new rate of growthin the number of ASes is des
ribed by dN=dt = (q � r)N , where r is the rate of
oales
en
e.This merger model exhibits improved agreement with data with respe
t to smallto medium sized ASes, but predi
ts large AS sizes less well, 
ompared to the puregrowth model. More importantly, it points to the need for analysis and dete
tion ofmore realisti
 merger pro
esses (su
h as those that a

ount for the relative sizes ofthe ASes being merged).We then return to study the impa
t of size on node degree and inter-AS 
on-ne
tivity. This extension makes a third assumption in addition to those above, thatthere exists (3) an approximately proportional relationship between AS size and de-gree [14℄. The resulting model shows that highly variable AS degrees may easilyarise without preferential 
onne
tivity, and in fa
t without any global knowledge ofnetwork state by individual ASes. Indeed, in our model, the methods by whi
h ASessele
t peering partners 
an remain 
ompletely unspe
i�ed.We present a simple algorithm whi
h 
onstru
ts AS-AS peering links as the ASesgrow in size, over time. We show that, in an environment where the growth rate of
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hosts and ASes is exponential, random sele
tion pro
ess suÆ
es to produ
e a highlyvariable degree distribution among ASes. To demonstrate the 
exibility of this modelan example is presented where we spe
ify that the sele
tion pro
ess 
onsider the sizeof the AS when de
iding whether to insert new links.We 
on
lude that, for topology generation, it is not ne
essary to in
orporatepreferential 
onne
tivity in order to generate highly variable AS degree distributions.This leaves the door open for more pra
ti
ally justi�ed bases for forming inter-ASlinks, e.g., based on e
onomi
 and geographi
al 
onsiderations.This thesis provides a growth model to 
onne
t ASes. This model for the ASgraph is more general than the B-A model, and is based on empiri
al observationsof Internet growth dynami
s. It allows for inter-AS 
onne
tions to be formed in away that need not be based on AS degree, losing. We show that this model yieldshighly-variable degree distributions, and that its outputs agree well with empiri
almeasurements of AS graph degree distribution.In addition, we show that growth based models are a good �rst step to under-standing the evolution of the sizes of ASes. Our model leads naturally to a methodfor labelled network topology generation in whi
h the topology grows in
rementally,and as nodes are added, new ASes arise, and existing ASes grow and merge.



Chapter 2
Related Work
Until re
ently, Internet topologies have been generated using random and hierar
hi
almodels. Among the more signi�
ant of these is work due to Calvert et al. in [11℄.That paper proposes generating smaller domain-like networks and 
onne
ting themtogether to 
reate a hierar
hi
al stru
ture whose properties are spe
i�ed by inputparameters. The goal in this work was to emulate the types of relationships thatexist on the Internet. Unfortunately, these random and hierar
hi
al approa
hes failto 
apture many signi�
ant attributes of Internet topology as well as the power-lawmodels [35, 26℄ dis
ussed below.Sin
e attention was drawn to power-laws in Internet topologies by [16℄, modelinge�orts have shifted to reprodu
ing these power-law properties. The most notablee�ort in this dire
tion has been the Barab�asi-Albert preferential atta
hmentmodel [7℄.In this model, the network is formed through in
remental addition of nodes. Themodel's key assumption is that a new node forms 
onne
tions to existing nodesbased the existing nodes' degrees. The probability that a new node will 
onne
t toan existing node i is proportional to �(i) = ki=�jkj, where ki is the degree of node i.The resulting rate at whi
h nodes a
quire new edges is given by Æki=Æt = ki=2t, where
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t is the time elapsed from the start of the pro
ess. The resulting degree distributionexhibits a power-law tail, with a �xed exponent of � = �3.Later work has built upon and extended the B-A model. The same authors in [3℄extended the model to allow re-wiring, in whi
h edges may also be deleted or movedat ea
h timestep; this allows the exponent in the power law relationship to vary. Thework in [29℄ investigates the 
ase where only a subset of all nodes in the networkare available to 
hoose from. With only slight modi�
ations to the B-A model theyshow that a power-law degree distribution emerges. Additionally, a \generalizedlinear preferen
e" model is proposed in [10℄ whi
h better mat
hes the 
lusteringbehavior and path lengths of empiri
al Internet measurements. These extensionshave improved the 
exibility of the B-A model, albeit with a 
orresponding in
reasein 
omplexity.The generation of power-laws through random graph models has also re
eived
onsiderable re
ent attention. An overview of existing models appears in [1℄, alongwith a single set of models whi
h generalizes them all. In this family of models,nodes are periodi
ally added to the graph with some probability and are initiallyassigned an in-weight and out-weight of 1. At ea
h timestep, t, with some �xedprobability, a new dire
ted edge is 
reated between nodes i and j. The probabilityof sele
ting an edge from i to j is in proportion to i's out-weight and j's in-weight,respe
tively. Then, the out-weight of i and the in-weight of j are in
reased by 1;hen
e, at every timestep the total in-weight (or out-weight) in the system is exa
tlyt. This general method 
an generate graphs with arbitrary degree distributions, butare not proposed as realisti
 models for the dynami
s of Internet growth.In 
ontrast to the approa
hes above whi
h fo
us on reprodu
ing statisti
al prop-erties, another family of models explores the impli
ations of optimization goals onnetwork evolution. One su
h model has been suggested in [15℄; it assumes that nodes
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arrive uniformly at random within some Eu
lidean spa
e, and the newly 
reated edgesattempt to balan
e the distan
e d from its new neighbour with the desire to minimizethe average number of hops h to other nodes. A new node i forms an edge to j byminimizing the weighted sum 
 �dij+hj. The resulting degree distribution exhibits apower-law tail. A se
ond optimization-based model is des
ribed in [4℄; this do
umentexplores a similar heuristi
 but at the ISP level.The investigation in [14℄ evaluates the merits of the B-A model and its appli
a-bility to the Internet. The authors 
on
lude that, while the B-A family of modelsdo su

eed in produ
ing power-laws, the model itself is not representative of thedynami
s that drive Internet evolution: its growth pro
esses (preferential 
onne
-tivity) do not mat
h those observed in the Internet, nor does the requisite globalknowledge assumption hold. Also, they present eviden
e to suggest that AS-leveldegree distribution is not a pure power-law, though still highly variable. This 
on-
lusion is drawn when attempting to build a more 
omplete Internet graph usingmultiple sour
es. Based on these observations, together with eviden
e in [34℄ whi
hlinks degree to size, [14℄ suggests that other (perhaps simpler) me
hanisms de
idethe evolution of the Internet.The work in this thesis shows that preferential 
onne
tivity, or indeed any de-penden
e on degree in making 
onne
tion de
isions, is not ne
essary in order forpower-law degree distributions to emerge. Furthermore, ours is the �rst model thatmodels highly variable degree distributions as well as the size and growth of au-tonomous systems themselves.



Chapter 3
Ba
kground
Before beginning a dis
ussion of AS size distributions we provide a detailed des
rip-tion of the data used (that we 
onsidered using). We also des
ribe the initial stepstaken to develop an understanding of AS growth and behaviour. The intuition weseek should help us to 
onstru
t a model to des
ribe AS growth as seen in the Inter-net.In order to tra
k any entity in any study, some form of identi�
ation is required.When seeking servi
es, in many 
ountries people are most easily identi�ed by a uniqueidenti�
ation number (eg. so
ial se
urity in the U.S.A.). Moreover, we also need tobe able to route information to individuals using a mailing address. The Internet'sanalogue to I.D. numbers and mailing address are routing numbers su
h as IP or ASnumbers. Internet routing numbers are globally unique and so they 
an also be usedto identify entities as they appear online, move, or disappear.For the purpose of this dis
ussion, we draw a distin
tion between the followingterms:

� IP: We use `IP', `IP blo
ks', `IP spa
e', and `IP pre�x' inter
hangeably torefer to sets of 
ontiguous IP addresses that are allo
ated to registrants on the
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Internet (Se
tion 3.1.1). These are allo
ated but not ne
essarily in use.

� Host: This term is used to refer to IPs that are a
tually in use on the Internet.Typi
ally there is a 1:1 mapping of IP to physi
al ma
hine, but this is notalways the 
ase1. We sometimes refer to hosts as \live IPs" to re
e
t thea
tual use of an IP address.
Following a 
omprehensive sear
h for and s
rutiny of data sour
es, we determinedthe most useful and a

urate sour
es of information to be Internet Registrationssummaries [5, 6, 31℄, BGP tables, and a history of the number of hosts in the Internet(if available).We �rst dis
uss the data 
hosen and summarize its short
omings. Then we brie
ypresent our initial attempts to gain an intuition, with e�orts that followed in subse-quent 
hapters.

3.1 Publi
 Data Sour
es
3.1.1 Registry Summaries
Three registries are responsible for allo
ating globally unique routing numbers (IPand AS numbers) worldwide. The agen
y RIPE is responsible for Europe and super-Sarahan Afri
a, APNIC for South-East Asia, and ARIN for the remainder of theworld.Ea
h of the registries keeps a history of all allo
ated routing numbers that ispubli
ly available [6, 5, 31℄. This summary of allo
ations la
ks any ownership infor-mation, as 
an be seen in �gure 3.1. Ea
h entry is delimited by a verti
al bar and
an be de
oded a

ording to the legend below.1For our purposes we say that multiple IPs assigned to host represents multiple hosts
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arin|CA|ipv4|216.254.128.0|24576|20000315|allo
atedarin|US|ipv4|216.255.0.0|16384|20010416|allo
atedarin|US|ipv4|216.255.64.0|8192|20010416|allo
atedarin|US|ipv4|216.255.128.0|8192|20010430|allo
atedarin|US|ipv4|216.255.192.0|4096|20010501|allo
atedarin|US|ipv4|216.255.224.0|4096|20010501|allo
atedarin|AU|ipv4|219.0.0.0|16777216|20011015|allo
atedarin|AU|ipv4|220.0.0.0|16777216|20011203|allo
atediana|US|ipv4|224.0.0.0|268435456|19910522|assignedarin|CH|asn|593|1|19900401|allo
atedarin|DE|asn|575|1|19900401|allo
atedarin|US|asn|257|1|19881122|allo
atedarin|US|asn|296|1|19890608|allo
atedarin|US|asn|149|1|19880104|allo
atedarin|US|asn|85|1|19860910|allo
atedarin|US|asn|133|1|19870919|allo
atedarin|US|asn|713|1|19900823|allo
atedarin|US|asn|218|1|19880729|allo
atedarin|US|asn|522|1|19890825|allo
ated

Figure 3.1: A Typi
al Summary of Allo
ations
Registrar Country Code Type First RoutingNumber Range Date NotAppli
ableThe list is maintained by hand and is sus
eptible to human error. Nevertheless,it is the most a

urate available re
ord of AS allo
ations. These summaries providevaluable information: namely, we 
an tra
e (a) AS number assignments, (b) assign-ments of IP blo
ks, and (
) the date on whi
h an assignment was made.

3.1.2 BGP Tables
In order to 
ommuni
ate amongst themselves, ASes need to know about ea
h other.They need to know whi
h ASes exist and how to route information to them. Routing
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BGP table version is 3626864, lo
al router ID is 198.32.162.100Status 
odes: s suppressed, d damped, h history, * valid, > best,i - internal Origin 
odes: i - IGP, e - EGP, ? - in
ompleteNetwork Next Hop Path* 3.0.0.0 195.211.29.254 5409 6667 209 701 80 i* 167.142.3.6 5056 701 80 i* 4.0.0.0 167.142.3.6 5056 1 e* 204.212.44.131 234 2914 1 i* 6.0.0.0 167.142.3.6 5056 7018 7170 1455 i* 195.211.29.254 5409 6667 209 7170 1455 i* 9.2.0.0/16 195.211.29.254 5409 6667 209 701 i*> 134.55.20.229 293 701 i* 9.3.4.0/24 195.211.29.254 5409 6667 209 3561 1221 ?* 134.55.20.229 293 1 16779 1221 ?

Figure 3.2: Sample (Condensed) Entries in a BGP Table, with Legend
and rea
hability information is passed around using BGP (BorderGatewayProto
ol)messages. As BGP messages travel through the network, routers build and storeevery valid path. Best paths are stored and 
hosen a

ording to some poli
y.Referring to the sample BGP table entries in �gure 3.2, the information providedthat is relevant for our purposes 
onsists of the \Network" and \Path" 
olumns. TheNetwork 
olumn is the destination represented by longest mat
hing IP pre�x, whilethe Path 
olumn is a series of numbers. This series of numbers represents the pathin terms of AS numbers, from immediate neighbour to �nal destination.These tuples enable us to infer details su
h as average path length, 
oales
en
e,and link 
reation at the AS level, among others. Unfortunately, BGP is very volatile [9℄and one must determine if snapshot information suÆ
es, or if long-term averages arene
essary.
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3.1.3 Host History
A re
ord of the number of hosts in use on the Internet is diÆ
ult to obtain. Thereasons for this are two-fold. First, the Internet is now owned and managed by privateentities unwilling to divulge details of their infrastru
ture. Se
ond, even if it werepossible, no 
entral re
ord of host a
tivity exists. Hen
e, studies to determine theInternet's size 
annot be validated, though we 
an a

ept them as useful estimates.Only two known proje
ts have attempted to determine the growth of the Internetwith any su

ess: Tel
ordia's Netsizer [30℄ is no longer available, hen
e we look toInternet Software Consortium's \Internet Domain Survey" [20℄. IDS host 
ounts arepubli
ly available and have been produ
ed semi-annually from January 1995, andquarterly from 1991-1995. Their 
ounts are derived from a reversal of the DomainName System's lookup pro
ess, the result of whi
h is an approximate 
ount of IPaddresses in use. It is the best available re
ord of whi
h we are aware.
3.2 Building an Intuition
3.2.1 First Attempts
This step, for the most part, 
onsisted of data 
olle
tion and subsequent reorganiza-tion of the data into a usable format. What results are the plots in Figure 3.3. Theseplots show the 
umulative allo
ations of routing numbers over time on di�erent times
ales. It should be noted that the (near) verti
al line appearing in IP allo
ationsaround 1991-92 in Figure 3.3b) should be ignored as it represents an anomolousallo
ation (spe
i�
ally the assignment of some 250 million multi
ast addresses).But what 
an we determine from these plots? Perhaps there is some relationshipthat is visible. Though we 
an see how these numbers have been handed out, it is
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Figure 3.3: Cumulative Allo
ations of a) AS numbers and b) blo
ks of IP addresses
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diÆ
ult to draw any 
on
lusions relating the number of ASes with the number ofhosts.To better understand, we next plotted the ratio of IP addresses per AS. Theresult is Figure 3.4. Again, the spike that appears about 1991 should be ignored forthe same same anomolous allo
ation mentioned above.While it may seem that there is some relationship to be inferred, we 
on
ludethat the use of IP allo
ations to determine host growth is misleading. There arefewer IPs handed to ASes over time simply be
ause more IP addresses are initiallyallo
ated than are ne
essary. This is to a

omodate growth in a network withouthaving to repeatedly request more IP spa
e from the registries. Also, routing tablesizes 
an be redu
ed by advertising larger 
ontiguous blo
ks of IP addresses.These �rst attempts only reinfor
ed a belief that IP `spa
e' 
ould not be usedto a

urately determine the information we desire. A true host 
ount surely wouldyield di�erent results, and surely a host 
ount did just that.
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e
3.2.2 Using Host Counts
It should now be apparent that a history of host appearan
es on the Internet isimportant. After all, a building's o

upan
y 
annot be determined by its 
apa
ity.Re
all our two sour
es of information, Netsizer [30℄ and IDS [20℄, of whi
h host 
ountsonly from the latter are publi
ly available.To better understand how IP addresses are assigned in relation to how they areallo
ated, we plot the ratio of HostsAllo
ated IPs in Figure 3.5. Note that, although thisratio is growing, only 0:08% of all IP spa
e is 
urrently in use. This only reinfor
esthe need for a good host 
ount.Returning to the desire to understand Internet pro
esses that are ne
essary tobuild a relevant model we plot �gure 3.6.Now we 
an see a more a

urate representation of average AS growth. To be
lear, this plot shows the appearan
e of new hosts within an AS over time. Noti
e
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the line seems near-linear.But Figure 3.6 is skewed by astronomi
al notion of time. Hen
e we plot inFigure 3.7 the number of ASes in host-time, where events are appearan
es of newhosts rather than passing of days and months. The linear relationship hinted at inthe previous plot is now only more apparent and gives us reason to pro
eed further.



Chapter 4
Constru
ting a Simple Model
We motivate our model with observations on the growth of ASes and hosts overtime. Using AS number allo
ations 
olle
ted from the three Internet registries andestimates of the number of Internet hosts 
olle
ted from the Internet Domain Survey[20℄ , we plot the growth of ASes and Internet hosts over the last de
ade in Figure 4.1.As one might naturally expe
t, both plots give eviden
e of exponential growth.
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These observations provide starting points for our model.
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4.1 A Simple Model and its Analysis
We summarise the model provided in [18℄ 
onstru
ted using the observations maderegarding exponential growth.Let N(t) be the total number of ASes (`N ' stands for `number') and M(t) be thetotal number of hosts (`M ' stands for `mass') in the system. The simplest growthmodel 
onsistent with the observations above is mathemati
ally des
ribed by linearequations dNdt = qN; dMdt = pM + qN: (4.1)
Here q is the rate of 
reation of new ASes and p is the rate of 
reation of newnodes. When a new AS is 
reated, the host is given that new label, explaining theqN term in Eq. (4.1). (For now, we shall assume that there is no merging of ASes;moreover, we assume that links do not a�e
t growth pro
esses and hosts and linksnever disappear.) Solving for N and M gives

N(t) = N(0) eqt; (4.2)M(t) = Aept +BN(t); (4.3)
with A;B being simple fun
tions of the initial data M(0); N(0) and the parametersp and q. At the spe
ial point p = q the 
oeÆ
ients diverge (A = B =1), re
e
tingthat the exa
t solution is a
tually a linear 
ombination of ept and t ept. Thus theaverage AS size hsi �M(t)=N(t) 
ould in prin
iple exhibit the following asymptoti
behaviors: hsi � 8>>><>>>:

finite when p < q,lnN when p = q,N (p�q)=q when p > q. (4.4)
We show later (Figure 4.3) that the average AS size grows over time (and with
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N), thus the inequality p > q must hold.Let Ns(t) be the number of ASes with s nodes. This size distribution satis�es therate equation1 dNsdt = p [(s� 1)Ns�1 � sNs℄ + qNÆs;1: (4.5)
We already know N(t) = N(0) eqt. Solving Eqs. (4.5) re
ursively and expressing interms of N rather than t yields

Ns = nsN + sXj=1CsjN�jp=q: (4.6)
The 
oeÆ
ients Csj depend on initial 
onditions while ns are universal. Asymptoti-
ally, only the linear term nsN matters. To determine this dominant 
ontribution,we insert Ns(t) = nsN(t) into Eq. (4.5). We arrive at the re
ursion relation s+ qp!ns = (s� 1)ns�1 (4.7)

for s � 2, while for s = 1 we re
over n1 = q=(q+ p). A solution to re
ursion (4.7)reads
ns = qq + p �(s) � �2 + qp�� �s+ 1 + qp� : (4.8)

Asymptoti
ally, the ratio of gamma fun
tions simpli�es to the power law,
ns � C s�� ; (4.9)

with � = 1 + q=p and C = qq+p � �2 + qp�.1In the large time limit, the random variables Ns(t) be
ome highly lo
alized around 
orrespond-ing average values.
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4.2 Estimating Growth Rates
In order for us to validate the proposed growth model, we �rst need to estimate theparameters p and q, the growth rate of the number of hosts and ASes, respe
tively.To estimate these rates, we explored a number of alternatives (detailed in Chap-ter 3) before sele
ting the methods we deemed most appropriate. For example, BGPtables appear to be a viable alternative for estimating both rates; however, logs onlydate ba
k to around 1997; moreover, not all IP addresses within a pre�x advertisedin a BGP pre�x are a
tually in use. The best available method seems to be to usethe publi
ly available routing number allo
ations provided by the ARIN, RIPE, andAPNIC registries. Ea
h keeps a publi
 re
ord dating ba
k to the early 1980s of rout-ing number allo
ations whi
h in
lude, among other details, the routing number andits type (IP or AS), the date on whi
h the number was allo
ated, the quantity (andin the 
ase of IP allo
ations, the starting address). It should be noted that RIPEdoes not publish AS number allo
ations, though many allo
ations to that region havebeen re
orded by ARIN.From these tables we derived the plot of AS growth in Figure 4.1(a), and plottedagain on logs
ale in Figure 4.2(a). Here we assume that an AS typi
ally 
omes intoexisten
e on the Internet shortly after it is allo
ated, thus the allo
ations provide agood estimate for q. Also re
all that we are primarily interested in the overall rateof growth. Fitting this logs
ale plot to a line reveals that AS numbers are indeedallo
ated at an exponentially growing rate. We then estimate q by the slope of thelinear regression �t to the 
urve, or approximately 3:8 � 10�4.Estimating p, however, is more diÆ
ult. As noted in Chapter 3, allo
ations ofIP addresses are made in bulk by Internet Registries; hen
e many more IP addressesare allo
ated than the number of IP addresses in use. The Registries' allo
ations
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statisti
s show that approximately 50% of IP addresses have been allo
ated and thatthe number of allo
ated IP addresses is growing mu
h less than exponentially, as 
anbe seen in Figure 3.3. We 
onje
ture this trend does not result from the Internetgrowing less than exponentially, but rather from a growing tenden
y to better manageallo
ated IP spa
e.The Registries provide an ex
ellent re
ord of AS births, but it is infeasible tore
ord IPs in use (and hen
e, re
ord births of hosts and routers on the Internet).The re
ords of host growth we 
onsidered were Tel
ordia's Netsizer [30℄ (no longera publi
ly available servi
e) and the widely 
ited Internet Software Consortium's\Internet Domain Survey" proje
t. The host 
ount they develop is based on a reverseDNS pro
ess; details 
an be found at [20℄. We 
an be 
ertain that Registry IPallo
ation re
ords do not provide host growth statisti
s sin
e (using IDS numbers)usage of allo
ated IP spa
e has in
reased from less than 1% in 1994 to 8% in 2002.Using the numbers published by IDS, we plot host growth in logarithmi
 s
ale inFigure 4.2(b). This plot seems to show a 
hange in slope around 1996. Using themore 
onservative growth rate, i.e. the best �t line of the 
urve following 1996, we�nd p to be about 4:8 � 10�4.
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We emphasize that while host 
ount may well underestimate the a
tual numberof hosts on the Internet, we are primarily interested in estimating the slope of the
urve; our model is una�e
ted by s
aling fa
tors.
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4.2.1 Analyti
al Validation
Our model also makes a very spe
i�
 predi
tion on the relationship between N andM as the system evolves. From Eqn. 4.4, we expe
t

hsi �M(t)=N(t) � N(t)(p�q)=q;
i.e. M � N1+(p�q)=q. Indeed, we see 
lear eviden
e of a power-law �t between Mand N when we plot their relationship on log-log s
ale in Figure 4.3. The predi
tedslope is 1.26 and the slope of the linear regression is 0.56, so while the model is inthe right ballpark, some additional investigation is warranted.
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4.2.2 Empiri
al Validation

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

10 20 30 40 50 60 70 80 90 100

Pr
[X

 =
 x

]

Size

1999
2002

Conservative p

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

lo
g(

Pr
[X

 >
 x

])

log(size)

1999
2002

Simple Model

Figure 4.4: Simple Model Predi
tions vs. Measurements
We �rst 
ompare the model's predi
tions using our estimates for p and q againstempiri
al data from 1999 and 2002 in Figure 4.4. Size distributions drawn usingMer
ator data in 1999, and Skitter data in 2002. The pdf is provided to show roughagreement in the body of the distribution, the log-log plot of the 

df shows thequality of the �t in the tail. We des
ribe our e�orts to improve the simple model'spredi
tive power and a

ura
y next.



Chapter 5
A More Complete Model

5.1 Modelling AS Mergers
The model des
ribed in Se
tion 4.1 is appealing be
ause of its simpli
ity, but failsto a

ount for a set of prominent events in our datasets | namely, mergers betweenpairs of ASes. In our datasets, we observe these mergers, or 
oales
en
e events, inour BGP logs when we witness one AS begin to advertise the set of IP addressesformerly advertised by another AS that then disappears. We provide our methodol-ogy for dete
ting these events in full detail in Se
tion 5.3.1. Coales
en
e markedlyimpa
ts the manner in whi
h ASes grow, sin
e they enable an AS to grow by a mul-tipli
ative fa
tor at a single timestep. In this 
hapter, we des
ribe how to augmentthe model to in
orporate mergers, analyze the asymptoti
 behavior of the model andits predi
tions, and 
ompare the predi
tions to measurements derived from our datasets.Now, we shall take into a

ount the in
rease of the total number of nodes, labels,and the merging between di�erent labels, using the same assumptions as before.Re
all the notation introdu
ed in Chapter 4. The model is now des
ribed by linear
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equations

dNdt = (q � r)N; dMdt = pM + qN:
The new parameter, r, is the rate of 
oales
en
e, i.e. the rate at whi
h two ASesde
ide to merge. As before, solving for N and M gives di�erential equations:

N(t) = N0 e(q�r)t and M(t) = Aept +BN(t): (5.1)
Following the same analysis of asymptoti
 behavior as in Se
tion 4.1, and reasoningas before that the average AS size is large and growing, the inequality p > q�r musthold, whi
h implies hsi � N (p�q+r)=(q�r).
5.2 Impli
ations of the Model
Let Ns(t) be the number of ASes with s nodes. This size distribution satis�es therate equation dNsdt = p [(s� 1)Ns�1 � sNs℄ + qNÆs;1 (5.2)

+ rNK 8<: Xi+j=sKijNiNj � 2Ns 1Xj=1KsjNj9=; :
The �rst term on the right-hand side a

ounts for growth that pro
eeds with ratep: When a node is added to an AS with s � 1 nodes, the number of ASes with snodes in
reases by one; similarly when a node is added to an AS with s nodes, thenumber of ASes with s nodes de
reases by one. The next term on the right-handside of Eq. (5.2) a

ounts for nu
leation, with rate q, of new ASes (of size one; one
an also study more general situations, e.g., sizes of new ASes 
an be drawn from a
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distribution). The last term des
ribes 
oales
en
e that pro
eeds with rate r. Thisterm 
ontains a symmetri
 \kernel" Kij, the rate of merging between ASes with iand j nodes; K(t) = Pi;j�1KijNi(t)Nj(t) is the proper normalization fa
tor.Our ongoing work fo
uses on identifying whi
h kernel most a

urately re
e
tsa
tual 
oales
en
e behavior. In what follows, we outline the derivation of the asymp-toti
 behavior of the simplest kernel (an exa
t analysis is provided in the appendix)and brie
y motivate a more general 
lass of kernels, whi
h we 
an also analyze.
5.2.1 Constant Kernel
Setting Kij = 1 transforms Eq. (5.2) into

dNsdt = p [(s� 1)Ns�1 � sNs℄ + qNÆs;1 (5.3)
+ rN 8<: Xi+j=sNiNj � 2NNs9=; :

Equations (5.3) 
an be solved re
ursively. For instan
e, the number of ASes of thesmallest possible size evolves a

ording to _N1 = qN � (p + 2r)N1. A solution tothis equation is a linear 
ombination of two exponents. Asymptoti
ally, the solutionsimpli�es to N1(t) = n1N(t) with n1 = q=(p + q + r). Similarly, ea
h Ns(t) growslinearly with N . Writing Ns(t) = nsN(t); (5.4)
we re
ast Eq. (5.3) into the re
ursion relation

(q � r)ns = p [(s� 1)ns�1 � sns℄ + qÆs;1 (5.5)+ r Xi+j=sninj � 2rns:
Further dis
ussion and analysis is available in [18℄.
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5.3 Estimating the Rate of Coales
en
e
Unfortunately, there is no obvious means of tra
king AS mergers on the Internet,sin
e we are not aware of any publi
ly available re
ords providing this information.We therefore resort to making inferen
es, spe
i�
ally, by examining aggregated BGPtable ar
hives stored by RouteViews [32℄ at U. Oregon, NLANR and PCH sin
e1997. Our strategy is to to identify signatures of these merger events from 
ompar-isons of sets of daily BGP snapshots This strategy is 
ompli
ated by the presen
e of
onsiderable daily 
hurn [9℄, 
louding events of interest with substantial noise.We argue that aside from 
hurn, there are two reasons for an AS to disappearfrom daily BGP snapshots.
Coales
en
e: The IP pre�xes formerly advertised by one AS are now advertisedby a di�erent AS, and the former AS disappears from BGP tables.
Evaporation: The IP pre�xes formerly advertised by one AS simply disappearfrom the BGP tables.
Note that our methods 
annote dete
t AS mergers in whi
h the a
quiring AS retainsuse of the a
quired AS number as well as its own.To infer these two events, we �rst identify all \suspi
ious" events on 
onse
utivedaily BGP snapshots. We de�ne a suspi
ious event to be either 1) the o

urren
e ofidenti
al IP pre�xes advertised by two di�erent ASes on su

essive days, or 2) an IPpre�x advertised by one AS on one day, followed by a day in whi
h that exa
t pre�xdoes not appear, moreover the longest mat
hing pre�x in
luding the missing pre�xis advertised by a di�erent AS. Of 
ourse, many of these suspi
ious events are due tonormal BGP 
hurn and its attendant 
auses. Therefore, the remaining obsta
le is todistinguish an a
tual merger or disappearan
e from an instan
e of BGP 
hurn. It is



30
diÆ
ult to distinguish 
oales
en
e from evaporation using our methods, sin
e an ASwhose IP pre�xes evaporate into a larger blo
k of address spa
e is indistinguishablefrom an AS whi
h 
oales
es with the AS advertising the surrounding IP blo
k(s).
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The distinguishing 
hara
teristi
 we use is to 
onsider the duration of time thatthe AS asso
iated with one or more suspi
ious events a
tually disappears from theBGP logs (our 
on
ern is that AS numbers are eventually reused). To determine anappropriate 
ut-o� threshold, we measured the duration it takes in days for an ASnumber to reappear after failing to advertise all of its IP blo
ks, using RouteViews'BGP tables spanning 01/02/2000 - 11/29/2000, and 02/20/2001 - 02/28/2002. Fig-ure 5.1 presents histograms (bin width = 5 days) of the time taken for an AS numberto re-appear on
e it has relinquished its IP spa
e. For 
larity, we remove the �rstbin, whi
h 
learly 
orresponds to BGP 
hurn and 
onstitutes the overwhelming ma-jority of disappearan
es. In total, 89% and 79% of ASes reappeared in the 2000 and2001 datasets, respe
tively, and the majority of these returned within a few days ofdisappearing. For this reason we feel it is reasonable to assume that beyond a 
uto�of between three months to a year, the suspi
ious event is not due to 
hurn. Were
ord a suspi
ious event as a merger when,
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� there is a handover of IP spa
e as dis
ussed above, and
� the AS number losing IP pre�xes then disappears, and
� the AS number does not return in the observed interval.Applying this analysis to the BGP data allows us to measure the quantities neededto estimate r: L(t) is the total number of ASes present in the tables at time t; andC(t) is the total number of ASes that have merged into another AS by time t. Then,using Eqn. (5.1),

L(t) � e(q�r)t � (L(t) + C(t))=ertL(t)=(L(t) + C(t)) � e�rt
5.3.1 Validation of the Merger Model
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In Figure 5.2 we plot L(t)=(L(t) + C(t) on semi-log axes, yielding an estimater � 1:8 � 10�4. Solving for ns in Equation 5.5 allows us to summarize the size
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distribution predi
ted by the 
oales
en
e model in Figure 5.3. As before, only a �twith the body 
an be seen from the pdf, so a log-log 

df is provided. Overall, whilewe �nd that the merger model is more a

urate than the simple model in predi
tingthe distribution of small to medium-sized ASes, it still does not give an a

uratepredi
tion of large ASes in the tail of the distribution. More work is ne
essary toinvestigate the nature of the kernel in a merger whi
h we hope will allow us to better
hara
terise merger events.
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Figure 5.3: Coales
en
e Model Predi
tions vs. Measurements
Having dis
ussed in detail two models to des
ribe AS growth pro
esses, we nowturn our attention to the in
uen
e these pro
esses exhibit upon the stru
tural devel-opment of inter-AS stru
ture, spe
i�
ally with respe
t to AS degree.



Chapter 6
AS Degree Formation
The previous se
tion showed that a power-law size distribution emerges in the pres-en
e of exponential growth of ASes and hosts. In this se
tion we extend that idea toin
orporate AS degree.The key assumption we make is that as an AS grows, it will establish links withother ASes. In this se
tion, we show that if link formation o

urs in rough proportionto an AS's growth, then AS degree distribution will show high variability. Morepre
isely, if ea
h time a new node is added to an AS it forms an inter-AS link to someother randomly 
hosen AS with some �xed probability, then AS degree distributionwill show high variability. Furthermore, this need only be in \rough proportion;" forexample, we show in Se
tion 7.3 that the result still holds if 
onne
tion probabilityvaries with the log of the AS size.Any su
h link formation pro
ess is simple sin
e it only depends on growth, it is
exible sin
e there are no in
uen
ing agents other than size, and no global knowledgeof other AS degrees is required to make link formation de
isions. In fa
t, no globalknowledge of any kind is required.The simplest inter
onne
tion pro
ess is detailed in the algorithm below. Re
all
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the notation from Se
tion 4.1 where t is time and N(t) is the number of ASes in thesystem. LetMi(t) be the mass of AS i, ti be the time AS i is inserted into the system,and x be some �xed probability. At ea
h timestep t two kinds of events o

ur: somenew ASes are born, and existing ASes grow. Starting at t = 1:

i. Cal
ulate the total number of ASes a

ording to N(t) = eqt.
ii. Insert bN(t)
�bN(t�1)
 new ASes with a size of 1 and out-degree of 1, wherethe neighboring AS is 
hosen uniformly at random.
iii. Cal
ulate the number of total routers within AS i a

ording to Mi(t) = ep(t�ti).
iv. For ea
h AS i, insert bMi(t)
�bMi(t�1)
 new routers. Ea
h new router 
reatesan inter-AS edge with probability x, and if an edege is 
reated, then invoke asele
t operation to determine to whom the new AS-to-AS link is 
reated.
The sele
t operation is left unspe
i�ed to emphasize the 
exibility of the linkformation pro
ess and its dependen
e only on the AS size. We 
onsider only thesimplest sele
tion operation, where a target AS is 
hosen uniformly at random.Even though this is a random 
onne
tion pro
ess, ASes that are larger in size willalso have higher degree. Thus, the degree distribution that results should be highlyvariable. We show in the following se
tions that a highly variable degree distributiondoes result, and that this distribution �ts well when 
ompared against distributionsobserved in the Internet.



Chapter 7
Validation
We validate our analysis and simulation results against empiri
al degree distributionsin the following se
tions.
7.1 Empiri
al Data Sour
es
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Figure 7.1: Degree Distributions Inferred from 4 Sour
es.
Before we 
an dis
uss our model's in
uen
e on inter-AS 
onne
tivity, and the
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validity of the results, we �rst dis
uss the empiri
al observations themselves. Thereare a number of sour
es from whi
h we 
an draw AS-level degree distribution. Weinfer empiri
al degree distribution through two distin
t methods, applied to threedi�erent sour
es.
7.1.1 BGP Adja
en
y
The �rst method is to infer AS degrees from BGP tables. For this purpose we useBGP tables from the RouteViews proje
t [32℄ 
olle
ted in April 2001 and February2002. Re
all from Se
tion 3.1.2 that an entry in a BGP table 
onsists of an IP blo
krepresented by its pre�x, followed by a sequen
e of ASes (an AS path) that must betraversed to rea
h an IP address within that range. We 
an infer an adja
en
y inthe AS-level graph for a pair of ASes whenever they appear in su

ession within anypath.While this inferen
e method typi
ally avoids false positives (adja
en
ies whi
hare not a
tually present, but appear to be present), it su�ers from false negatives,sin
e not all AS adja
en
ies are advertised a
ross BGP [14℄.
7.1.2 AS Overlays
A se
ond method for determining AS degrees is to annotate a router-level map withea
h router's asso
iated autonomous system. Nodes in the router-level graph arelabeled using IP addresses. In the overlay produ
ed by annotating the router-levelgraph, ea
h node is further labeled with its asso
iated AS. The approa
h is detailedin [13℄; we summarize the approa
h here. An IP is asso
iated with an autonomoussystem by performing a lookup in BGP tables (ar
hived from the same time period inwhi
h the router-level map was 
olle
ted). First, �nd the longest mat
hing pre�x of
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an IP address within the BGP table; the last entry in the path ve
tor is the numberof the AS whi
h owns that IP address. A 
omplete inspe
tion of every edge in theannotated router-level graph reveals an inter-AS edge wherever any pair of nodes arelabeled with distin
t AS numbers.This method has numerous advantages over AS maps inferred from BGP tablesdire
tly. It provides an AS map at a �ner granularity; aggregated ASes are revealedas are multiple links between ASes. However, this method su�ers from the followingdrawba
k. Any single BGP table is potentially in
omplete and 
an be limited bypath hiding from parent ASes (in order to redu
e message and table sizes). Sets ofBGP tables are used to redu
e the magnitude of this problem, with the belief thatmore BGP tables reveal more information. However, no AS 
an observe the existen
eof another AS whi
h is hidden by its parents.We draw on router-level maps gathered from the Mer
ator proje
t [19℄ in August2001, and another provided by the Skitter proje
t [33℄ gathered in January 2002.
7.1.3 Summary of Empiri
al Observations
Statisti
s, dates, and sour
es of all datasets drawn from RouteViews, Mer
ator, andSkitter are summarized in Table 7.1.3.

Sour
e ASes Edges Date MethodRoute Views 10854 47847 04/01 BGP Adja
eniesRoute Views 12875 57385 02/02 BGP Adja
eniesMer
ator 3478 13590 08/01 AS OverlaySkitter 9206 38334 01/02 AS OverlayTable 7.1: Summary of Data Sour
es
The degree distributions plotted in Figure 7.1 show that all methods and sour
es
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yield similar results. For subsequent 
omparisons, we use the distribution drawnfrom the autonomous system overlay 
onstru
ted using the Skitter dataset 
olle
tedin January 2002 as a baseline for 
omparison against simulation results.
7.2 Constant Conne
tivity Models
Se
tion 4.1 showed that the size distribution that results from our model has a power-law tail. However, sin
e the growth model does not dire
tly des
ribe degree, we turnto simulation to determine the in
uen
e of size and growth of the simple model ondegree.The simulation is exe
uted using the algorithm in Se
tion 6 using rates p =1:1 � 10�3 and q = 8:7 � 10�4 estimated in Chapter 4.2.2. The degree distributionpredi
ted by our model is plotted against observed degree distributions in Figure 7.2.We found empiri
ally that using �xed probability x = 0:10 results in verti
es ofour simulated graphs having a roughly 
ommensurate average degree to that of theSkitter dataset. Where the dis
repan
y does o

ur, the general trend is a tenden
yfor our model to underestimate the degree of small to medium sized ASes, whileoverestimating the degree of larger ASes.Figure 7.2 shows that the predi
ted degree distribution is similar to that of theSkitter dataset. Dis
repan
ies 
an potentially be removed by re�ning the de
isionpro
esses used to form AS to AS 
onne
tions in the model. In the following se
tion,we explore a re�ned model whi
h a

ounts for the size of the AS when determiningthe relationship between growth and link formation.
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Figure 7.2: Predi
ted Degree Distribution where x = 0:10
7.3 Size-Based Conne
tivity Models
The previous se
tion shows that link formation o

uring with 
onstant probabilityduring growth, while reasonable, 
ould be more a

urate. The relationship betweenpredi
ited and empiri
al distributions shown in Figure 7.2 suggest that there is roomfor other pra
ti
al in
uen
es on inter-AS link formation. Here we demonstrate the
exibility of our model by dis
ussing an approa
h that takes into a

ount the a
tualsize of the AS when 
hoosing to 
reate new links.We presuppose the following notion: as an AS grows, the ratio between its degreeand its size will shrink, and so a 
onstant probability when de
iding to 
reate newlinks may not best relate degree to size. Intuitively, the ratio between the degree ofan AS and its size is analogous to the notion of a surfa
e-to-volume ratio. In graph-theoreti
 terms, this ratio is often referred to as the 
ondu
tan
e of a subgraph.
De�nition 1 The 
ondu
tan
e of an autonomous system i with size (mass) Mi andout-degree di is diMi .
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Observations of 
ondu
tan
e are estimated from Mer
ator and Skitter datasetsdis
ussed in Se
tion 7.1, and shown in Table 7.3. This table shows that as an au-tonomous system grows, the average 
ondu
tan
e shrinks. While the a
tual 
ondu
-tan
e of ASes of a given size varies 
onsiderably, this trend holds on average. Notethat ASes of size 1 are ex
luded from the smallest range sin
e an AS of size 1 musthave 
ondu
tan
e of at least 1, and so may bias observations. Also, average 
on-du
tan
e in the largest ASes appear to break this trend. This may be an artifa
t ofnoise from a small number of data points.

Data Points Average Condu
tan
eSize Range Mer
ator Skitter Mer
ator Skitter2� 10 1404 4254 0.492 0.86611� 100 1429 3502 0.242 0.596101� 1000 359 1050 0.134 0.3131001� 10000 38 131 0.108 0.21310001� 100000 1 10 0.20 0.249Table 7.2: Condu
tan
e of ASes
We believe that this de
rease in 
ondu
tan
e is natural, driven by the de
reasingne
essity to add inter-AS links as an AS grows. For example, as previously mentioned,an AS of size 1 must have a minimum degree of 1 (otherwise it is not 
onne
ted toother ASes, and hen
e 
annot be a part of the AS-level map). We spe
ulate thatit is more often the 
ase that routers are added to a 
losed network to in
rease the
apa
ity and range of the network itself, rather than to 
onne
t to other ASes, andso a 
onne
tion probability that de
reases as an AS grows is reasonable.The ratios and ranges in Table 7.3 show diminishing 
ondu
tan
e as AS sizein
reases. To better �t the data observed in Table 7.3, we applied a logarithmi

orre
tion fa
tor to implement a \diminishing probability" fun
tion, L. This fun
tiontakes the size of the autonomous systemMi, and a �xed probability x as parameters,
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and returns a probability value:

L(x;Mi) = 8<:x; when Mi < 10,xlog10(Mi) ; otherwise. (7.1)
As before, we use the simple sele
t operation whi
h returns a neighboring AS
hosen uniformly at random. One point of interest is that L governs only those ASeswhere size � 10, otherwise the probability of 
onne
ting to another AS is arti�
iallyin
ated for the smallest ASes.

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g(

Pr
[X

 >
 x

])

log(degree)

x = 0.20 / log(size)
Skitter

Figure 7.3: Diminishing Probability where x = 0:20.
The distribution that results when applying the diminishing probability fun
tionis plotted against Skitter data in Figure 7.3, using x = 0:20, the value providing thebest �t. The two 
urves are nearly identi
al, sharing a similar slope, and are virtuallyindistinguishable throughout the entire body of the distribution.



Chapter 8
Con
lusion
Understanding the dynami
s of AS size distribution is important both for modelingpurposes and understanding 
onne
tivity. In this thesis we have proposed two modelsfor the evolution of the AS size distribution. We further explored a model for howhighly variable degree distributions may arise in the AS graph as a result of theevolution of AS size.First, we have provided and analyzed a growth model with rate equations. Wehave dis
ussed methods for estimating the parameters of this model and shown thesize distribution of ASes that it predi
ts. The model's predi
tions exhibit size dis-tributions that are in general agreement with empiri
al data, both in the body andthe tail of the distribution. However, dis
repan
ies exist between model and data,parti
ularly in the shape of the tail.Se
ond, we have suggested that it is important to in
orporate the merging ofASes in our models. We show how to do so, and spe
ify the resulting rate equation.The details of this model are highly dependent on assumptions about the manner inwhi
h ASes merge, whi
h is 
aptured in the merging kernel { the likelihood that twoASes of given sizes will merge at any timestep. We solve this model for the 
onstant
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kernel, and show how to estimate the asso
iated parameters. The results point tothe need for further analysis of the pro
esses by whi
h ASes merge.Lastly, we extended the growth model to 
onne
t AS nodes. We believe this isthe �rst su
h size based Internet model for AS-labelled graphs. It is instru
tive to
ompare this model with the B-A model.Like the B-A model, we assume that high variability has arisen via a \ri
h getri
her" phenomenon resulting from an exponential growth pro
ess. However the B-A model assumes preferential 
onne
tivity, meaning that new nodes probabilisti
allyprefer to 
onne
t to well-
onne
ted existing nodes. Besides requiring that ea
h AS beaware of the degree of ea
h other AS (a strong assumption of global knowledge), theB-A model strongly 
onstrains the resulting 
onne
tion pattern. This is restri
tive; asdis
ussed in [28℄, many graph realizations are 
onsistent with a given degree sequen
e,and di�erent realizations may have very di�erent properties. In fa
t, [27℄ shows thatthe AS graph exhibits a high degree of 
lustering, an e�e
t that is not 
aptured bythe parti
ular 
onne
tion pattern 
reated by the B-A model.In 
ontrast, the assumption in our model is that AS sizes are the underlying 
auseof high variability, and that a large AS will naturally tend to have a large degree.From this standpoint, our model allows for a mu
h wider range of 
onne
tion patternsthan the B-A model, sin
e the degree of an AS grows as a fun
tion of its size, butthe 
hoi
e of whi
h AS to 
onne
t to 
an be spe
i�ed independently, as a separatesele
tion operation. In this thesis we have explored the sele
tion operation in whi
hgrowing ASes 
hoose peering partners uniformly at random; however we expe
t thatany 
hoi
e of peering partners that is made without regard to degree (and in
ludingthose that exhibit a high degree of 
lustering) will likely show 
hara
teristi
 highvariability.Our results demonstrate that a simple and natural model in
orporating exponen-
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tial growth alone is suÆ
ient to drive both a highly variable AS size distribution anda highly variable AS degree distribution. We motivated this model with datasetsthat demonstrate exponential growth both in the number of hosts and the number ofASes, and validated the model by 
omparing the degree distribution our model pre-di
ts against observed degree distributions drawn from BGP tables and AS overlaymaps. We also provide an analysis of the power-law tail of the AS size distributionthat results when our methods are employed.We have integrated this model into the publi
ly available BRITE [8, 25℄ topologygeneration framework. In future work, one might investigate sele
tion operations thatin
orporate real-world 
onsiderations su
h as lo
ality, 
lustering and performan
eoptimization, to provide an even more realisti
 AS growth model. As part of thise�ort, better mining te
hniques of AS time-series data extra
ted from BGP logs arene
essary to better understand the underlying nature of AS growth, inter
onne
tionand merging over time [18℄. We hope this model is the �rst in a line of more 
exiblesize-based approa
hes to Internet modelling.
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