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ABSTRACT

Recent studies note that numerous structural properties in the Internet’s au-
tonomous system (AS) graph follow highly variable distributions. The most studied
of these is the AS degree (number of peering links) distribution, it is a crucial prop-
erty in the understanding of the Internet’s evolution and structure. The dominant
model for this phenomenon is the Barabési-Albert (B-A) model. Its central feature,
preferential connectivity, requires each AS to have global knowledge. This assump-
tion of global knowledge may produce the underlying properties observed in the AS
topology, but cannot explain the reasons they emerge. This thesis explores a more
general explanation for the highly variable distributions observed, one where pref-
erential connectivity and global knowledge are absent. Specifically, we explore the
relationship between AS size and degree distributions and the processes by which
they emerge.

We present two size models: one incorporates only the growth of hosts and ASes,
and a second extends that model to include mergers of ASes. Our models are moti-
vated by measurements of relatively unexplored data sources, as well as from novel
heuristics applied to examinations of collections of BGP tables. We show that these
models yield a size distribution exhibiting a power-law tail. Furthermore, in such a
model, if an AS’s link formation is roughly proportional to its size, then AS degree
will also show high variability. We instantiate such a model with empirically derived
estimates of growth rates and show that the resulting degree distribution is in good

agreement with that of real AS graphs.
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Chapter 1

Introduction

Many aspects of the Internet’s structure are relatively unknown. These gaps in
our knowledge pose problems when attempting to construct representative network
topologies for simulation and modeling. In addition, filling these gaps may shed light
on the forces behind the Internet’s growth and the ways in which the network may
fail.

There are two widely studied views of the Internet corresponding to different hi-
erarchical levels of aggregation. The router-level topology, where we consider only
those machines that are physically responsible for directing traffic between source
and destination, offers the finer-grained resolution of the Internet. Another view is
obtained when looking at the granularity of autonomous systems (or ASes) that are
responsible for the administration of a collection of these routers. For example, an av-
erage university campus might administer five or ten routers visibile on the Internet,
while a large ISP (Internet Service Provider) such as Sprint or UUNet are responsible
for the operation of hundreds or thousands of routers scattered geographically. Of
course every router must be associated with some AS. However, at the AS level of

abstraction router information is not available. In fact, most information regarding



the internal structure of the AS is hidden in this view.

We can represent these views using labelled graphs. In the AS-level graph ver-
tices represent ASes and edges represent AS-AS peering relationships, those links
established between ASes for the sake of global reachability. At the router-level,
graph nodes are routers and edges are network links. A node’s label corresponds to
the autonomous system to which the node belongs. These abstractions provide an
attractive target for Internet topology generation efforts, because they make possi-
ble significant improvements in network simulation. Properly labelled graphs would
allow meaningful simulation of traffic flow patterns, which are influenced strongly
by interdomain routing policies. Furthermore, accurate AS labelling would allow
realistic simulations of the BGP system, which is of considerable current interest.

Unfortunately, a number of gaps in our understanding prevent the construction
of such labelled graphs. Principal among these is the current lack of existence of a
model for the evolution of the interdomain system. Such a model should be able to
answer the questions: By what processes do new ASes arise over time? How do ASes
grow? By what processes do ASes merge? What determines the interconnection
processes between ASes? In this thesis we seek answers to these questions. To do so
we use a variety of Internet measurements, supplemented with insight from analytic
models.

A particularly surprising aspect of these graphs is the prevalence of highly variable
distributions [16, 23], the most well-studied of which is vertex degree. In discussing
properties of the AS graph, it is useful to draw a distinction between high variability
and power-law tails. High variability is a qualitative notion, referring to a probability
distribution showing non-negligible values over a wide range of scales (typically at

least three orders of magnitude). On the other hand, a distribution p(-) with power-



law tails has the formal property that:

p(x) ~ ™
with a > 0, and where a(z) ~ b(z) means that lim, ., a(z)/b(z) = c.

Some authors have argued that AS vertex degree is well modeled as having power-
law tails [16, 23]. Others have suggested that vertex degree does not clearly exhibit
power-law tails, although it is highly variable [12]. Since such highly-variable distri-
butions do not arise in simple random graphs, and since power-law tails do provide
a simple (albeit crude) approximation for the behavior of the true distribution, a
number of papers have proposed mechanisms (more complicated than purely random
connection) that may give rise to power-law degree distributions in graphs [7, 22, 21].

The most prominent model attempting to explain the emergence of power-law
degree distributions is the Barabdsi-Albert model (or B-A model) [7, 2]. In fact, it
has been considered in a number of papers as a model for AS graphs [3, 10, 29, 26, 35].
The B-A model assumes the network is formed through incremental addition of nodes.
In the simplest form of the model, a new node forms a connection to an existing
node with probability proportional to the existing node’s degree. This preferential

connectivity leads to a ¢

‘rich get richer” phenomenon in which high degree nodes
tend to increase in degree faster than low degree nodes. Such models have two
drawbacks. First, they require global knowledge of the connectivity of all other nodes
and second, there is no allowance for influences other than proportion of degree when
choosing neighbouring ASes. While they might be successful in reproducing observed
properties of Internet graphs, they unlikely to be representative of the processes

responsible for those properties.

In this thesis we present work published in [18, 17] and examine whether explana-



tions more general than the B-A model may suffice to explain highly variable degree
distributions in the AS graph. In trying to find such explanations, we look to the
evolution of ASes themselves. We are motivated by two observations. First, the au-
thors in [14] point out that AS degree is strongly correlated with AS size (measured
in number of nodes) — and that AS size also shows a highly variable distribution.
Second, we observe that during the last 10 years or so, the Internet has undergone
exponential growth in both number of nodes and number of ASes. Under such condi-
tions, we show here that highly variable AS sizes (and, presumably as a consequence,
highly variable AS degrees) may readily arise due to exponential growth alone.

We explore these observations in this thesis by first constructing a simple growth
model for ASes. Our model makes three assumptions: (1) exponential growth in the
number of hosts in the network; (2) exponential growth in the number of ASes in
the network. In this model, (the total number of hosts) and N (the total number
of ASes) are described by the simple linear growth equations dN/dt = ¢N and
dM/dt = pM + qN, where ¢ and p are the growth parameters. We show that in
the asymptotic time limit, this model leads to a stationary size distribution with
power-law tails.

The principal validation of this model is to check whether its predicted size distri-
bution agrees with empirical measurements of AS size distributions. For this purpose
we use two large router inventories, from the Mercator and Skitter projects, and map
each router to its associated AS. The resulting size distributions of ASes are found
to have long (though not clearly power-law) tails. Agreement between the AS size
distributions predicted by the growth model and the data is a good first order approx-
imation, but there are noticeable discrepancies. For example, the tail of the model
distribution is in general agreement with data, but it strictly follows a power-law,

while the empirical data shows some deviation from a power-law tail.



However, in the Internet there are events other than AS growth which occur. We
hypothesize that an important factor our simple model omits is the merger of ASes.
Statistical mechanics shows that highly variable size distributions can also result from
coalescence processes (as in the formation of raindrops or polymer aggregates [24]).
To understand the merger process and estimate a corresponding rate, we develop a
heuristic and apply it to examinations of BGP table collections over two one-year
periods. Adding mergers to our growth model complicates the analysis considerably.
Currently only the most tractable version of this model has been solved, in which
mergers occur with a rate proportional to the number of ASes present, in a manner
independent of the sizes of the ASes merging. In this version the new rate of growth
in the number of ASes is described by dN/dt = (¢ — r)N, where r is the rate of
coalescence.

This merger model exhibits improved agreement with data with respect to small
to medium sized ASes, but predicts large AS sizes less well, compared to the pure
growth model. More importantly, it points to the need for analysis and detection of
more realistic merger processes (such as those that account for the relative sizes of
the ASes being merged).

We then return to study the impact of size on node degree and inter-AS con-
nectivity. This extension makes a third assumption in addition to those above, that
there exists (3) an approximately proportional relationship between AS size and de-
gree [14]. The resulting model shows that highly variable AS degrees may easily
arise without preferential connectivity, and in fact without any global knowledge of
network state by individual ASes. Indeed, in our model, the methods by which ASes
select peering partners can remain completely unspecified.

We present a simple algorithm which constructs AS-AS peering links as the ASes

grow in size, over time. We show that, in an environment where the growth rate of



hosts and ASes is exponential, random selection process suffices to produce a highly
variable degree distribution among ASes. To demonstrate the flexibility of this model
an example is presented where we specify that the selection process consider the size
of the AS when deciding whether to insert new links.

We conclude that, for topology generation, it is not necessary to incorporate
preferential connectivity in order to generate highly variable AS degree distributions.
This leaves the door open for more practically justified bases for forming inter-AS
links, e.g., based on economic and geographical considerations.

This thesis provides a growth model to connect ASes. This model for the AS
graph is more general than the B-A model, and is based on empirical observations
of Internet growth dynamics. It allows for inter-AS connections to be formed in a
way that need not be based on AS degree, losing. We show that this model yields
highly-variable degree distributions, and that its outputs agree well with empirical
measurements of AS graph degree distribution.

In addition, we show that growth based models are a good first step to under-
standing the evolution of the sizes of ASes. Our model leads naturally to a method
for labelled network topology generation in which the topology grows incrementally,

and as nodes are added, new ASes arise, and existing ASes grow and merge.



Chapter 2

Related Work

Until recently, Internet topologies have been generated using random and hierarchical
models. Among the more significant of these is work due to Calvert et al. in [11].
That paper proposes generating smaller domain-like networks and connecting them
together to create a hierarchical structure whose properties are specified by input
parameters. The goal in this work was to emulate the types of relationships that
exist on the Internet. Unfortunately, these random and hierarchical approaches fail
to capture many significant attributes of Internet topology as well as the power-law
models [35, 26] discussed below.

Since attention was drawn to power-laws in Internet topologies by [16], modeling
efforts have shifted to reproducing these power-law properties. The most notable
effort in this direction has been the Barabési-Albert preferential attachment model [7].
In this model, the network is formed through incremental addition of nodes. The
model’s key assumption is that a new node forms connections to existing nodes
based the existing nodes’ degrees. The probability that a new node will connect to
an existing node i is proportional to II(¢) = k;/X;k;, where k; is the degree of node .

The resulting rate at which nodes acquire new edges is given by dk; /6t = k;/2t, where



t is the time elapsed from the start of the process. The resulting degree distribution
exhibits a power-law tail, with a fixed exponent of o = —3.

Later work has built upon and extended the B-A model. The same authors in [3]
extended the model to allow re-wiring, in which edges may also be deleted or moved
at each timestep; this allows the exponent in the power law relationship to vary. The
work in [29] investigates the case where only a subset of all nodes in the network
are available to choose from. With only slight modifications to the B-A model they
show that a power-law degree distribution emerges. Additionally, a “generalized
linear preference” model is proposed in [10] which better matches the clustering
behavior and path lengths of empirical Internet measurements. These extensions
have improved the flexibility of the B-A model, albeit with a corresponding increase
in complexity.

The generation of power-laws through random graph models has also received
considerable recent attention. An overview of existing models appears in [1], along
with a single set of models which generalizes them all. In this family of models,
nodes are periodically added to the graph with some probability and are initially
assigned an in-weight and out-weight of 1. At each timestep, ¢, with some fixed
probability, a new directed edge is created between nodes ¢ and j. The probability
of selecting an edge from ¢ to j is in proportion to #’s out-weight and j’s in-weight,
respectively. Then, the out-weight of ¢ and the in-weight of j are increased by 1;
hence, at every timestep the total in-weight (or out-weight) in the system is exactly
t. This general method can generate graphs with arbitrary degree distributions, but
are not proposed as realistic models for the dynamics of Internet growth.

In contrast to the approaches above which focus on reproducing statistical prop-
erties, another family of models explores the implications of optimization goals on

network evolution. One such model has been suggested in [15]; it assumes that nodes



arrive uniformly at random within some Euclidean space, and the newly created edges
attempt to balance the distance d from its new neighbour with the desire to minimize
the average number of hops h to other nodes. A new node ¢ forms an edge to j by
minimizing the weighted sum «y-d;; + h;. The resulting degree distribution exhibits a
power-law tail. A second optimization-based model is described in [4]; this document
explores a similar heuristic but at the ISP level.

The investigation in [14] evaluates the merits of the B-A model and its applica-
bility to the Internet. The authors conclude that, while the B-A family of models
do succeed in producing power-laws, the model itself is not representative of the
dynamics that drive Internet evolution: its growth processes (preferential connec-
tivity) do not match those observed in the Internet, nor does the requisite global
knowledge assumption hold. Also, they present evidence to suggest that AS-level
degree distribution is not a pure power-law, though still highly variable. This con-
clusion is drawn when attempting to build a more complete Internet graph using
multiple sources. Based on these observations, together with evidence in [34] which
links degree to size, [14] suggests that other (perhaps simpler) mechanisms decide
the evolution of the Internet.

The work in this thesis shows that preferential connectivity, or indeed any de-
pendence on degree in making connection decisions, is not necessary in order for
power-law degree distributions to emerge. Furthermore, ours is the first model that
models highly variable degree distributions as well as the size and growth of au-

tonomous systems themselves.



Chapter 3

Background

Before beginning a discussion of AS size distributions we provide a detailed descrip-
tion of the data used (that we considered using). We also describe the initial steps
taken to develop an understanding of AS growth and behaviour. The intuition we
seek should help us to construct a model to describe AS growth as seen in the Inter-
net.

In order to track any entity in any study, some form of identification is required.
When seeking services, in many countries people are most easily identified by a unique
identification number (eg. social security in the U.S.A.). Moreover, we also need to
be able to route information to individuals using a mailing address. The Internet’s
analogue to I.D. numbers and mailing address are routing numbers such as IP or AS
numbers. Internet routing numbers are globally unique and so they can also be used
to identify entities as they appear online, move, or disappear.

For the purpose of this discussion, we draw a distinction between the following

terms:

o IP: We use ‘IP’, ‘IP blocks’, ‘IP space’, and ‘IP prefix’ interchangeably to

refer to sets of contiguous IP addresses that are allocated to registrants on the



11
Internet (Section 3.1.1). These are allocated but not necessarily in use.

e Host: This term is used to refer to [Ps that are actually in use on the Internet.
Typically there is a 1:1 mapping of IP to physical machine, but this is not
always the case!. We sometimes refer to hosts as “live IPs’ to reflect the

actual use of an IP address.

Following a comprehensive search for and scrutiny of data sources, we determined
the most useful and accurate sources of information to be Internet Registrations
summaries [5, 6, 31], BGP tables, and a history of the number of hosts in the Internet
(if available).

We first discuss the data chosen and summarize its shortcomings. Then we briefly
present our initial attempts to gain an intuition, with efforts that followed in subse-

quent chapters.

3.1 Public Data Sources

3.1.1 Registry Summaries

Three registries are responsible for allocating globally unique routing numbers (IP
and AS numbers) worldwide. The agency RIPE is responsible for Europe and super-
Sarahan Africa, APNIC for South-East Asia, and ARIN for the remainder of the
world.

Each of the registries keeps a history of all allocated routing numbers that is
publicly available [6, 5, 31]. This summary of allocations lacks any ownership infor-
mation, as can be seen in figure 3.1. Each entry is delimited by a vertical bar and

can be decoded according to the legend below.

IFor our purposes we say that multiple IPs assigned to host represents multiple hosts
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arin|CA|ipv4|216.254.128.0|24576|20000315|allocated
arin|US|ipv4|216.255.0.0/16384|20010416|allocated
arin|US|ipv4|216.255.64.018192|20010416|allocated
arin|US|ipv4|216.255.128.018192]20010430|allocated
arin|US|ipv4|216.255.192.0]4096120010501|allocated
arin|US|ipv4|216.255.224.0]409620010501 |allocated
arin|AU|ipv4|219.0.0.0|16777216]/20011015|allocated
arin|AU|ipv4|220.0.0.0[16777216]/20011203|allocated
iana|US|ipv4(224.0.0.0]268435456|19910522|assigned
arin|CH|asn|593|1|19900401|allocated
arin|DE|asn|575|1119900401|allocated
arin|US|asn|257|1/19881122|allocated
arin|US|asn|296|1|19890608|allocated
arin|US|asn|149|1]19880104|allocated
arin|US|asn|85(|1|19860910|allocated
arin|US|asn|133|1|19870919|allocated
arin|US|asn|713|1]19900823|allocated
arin|US|asn|218|1/19880729|allocated
arin|US|asn|522|1]19890825|allocated

Figure 3.1: A Typical Summary of Allocations

Registrar| Country Code | Type | First Routing | Range | Date | Not

Number Applicable

The list is maintained by hand and is susceptible to human error. Nevertheless,
it is the most accurate available record of AS allocations. These summaries provide
valuable information: namely, we can trace (a) AS number assignments, (b) assign-

ments of IP blocks, and (c) the date on which an assignment was made.

3.1.2 BGP Tables

In order to communicate amongst themselves, ASes need to know about each other.

They need to know which ASes exist and how to route information to them. Routing
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BGP table version is 3626864, local router ID is 198.32.162.100
Status codes: s suppressed, d damped, h history, * valid, > best,
i - internal Origin codes: i - IGP, e — EGP, 7 - incomplete

Network Next Hop Path
* 3.0.0.0 195.211.29.254 5409 6667 209 701 80 i
* 167.142.3.6 50566 701 80 i
* 4.0.0.0 167.142.3.6 5056 1 e
* 204.212.44.131 234 2914 1 1
* 6.0.0.0 167.142.3.6 5056 7018 7170 1455 i
* 195.211.29.254 5409 6667 209 7170 1455 i
* 9.2.0.0/16 195.211.29.254 5409 6667 209 701 i
*> 134.55.20.229 203 701 1
* 9.3.4.0/24 195.211.29.254 5409 6667 209 3561 1221 7
* 134.55.20.229 293 1 16779 1221 7

Figure 3.2: Sample (Condensed) Entries in a BGP Table, with Legend

and reachability information is passed around using BGP (Border Gateway Protocol)
messages. As BGP messages travel through the network, routers build and store
every valid path. Best paths are stored and chosen according to some policy.

Referring to the sample BGP table entries in figure 3.2, the information provided
that is relevant for our purposes consists of the “Network” and “Path” columns. The
Network column is the destination represented by longest matching IP prefix, while
the Path column is a series of numbers. This series of numbers represents the path
in terms of AS numbers, from immediate neighbour to final destination.

These tuples enable us to infer details such as average path length, coalescence,
and link creation at the AS level, among others. Unfortunately, BGP is very volatile [9]
and one must determine if snapshot information suffices, or if long-term averages are

necessary.



14

3.1.3 Host History

A record of the number of hosts in use on the Internet is difficult to obtain. The
reasons for this are two-fold. First, the Internet is now owned and managed by private
entities unwilling to divulge details of their infrastructure. Second, even if it were
possible, no central record of host activity exists. Hence, studies to determine the
Internet’s size cannot be validated, though we can accept them as useful estimates.

Only two known projects have attempted to determine the growth of the Internet
with any success: Telcordia’s Netsizer [30] is no longer available, hence we look to
Internet Software Consortium’s “Internet Domain Survey” [20]. IDS host counts are
publicly available and have been produced semi-annually from January 1995, and
quarterly from 1991-1995. Their counts are derived from a reversal of the Domain
Name System’s lookup process, the result of which is an approximate count of IP

addresses in use. It is the best available record of which we are aware.

3.2 Building an Intuition

3.2.1 First Attempts

This step, for the most part, consisted of data collection and subsequent reorganiza-
tion of the data into a usable format. What results are the plots in Figure 3.3. These
plots show the cumulative allocations of routing numbers over time on different time
scales. It should be noted that the (near) vertical line appearing in IP allocations
around 1991-92 in Figure 3.3b) should be ignored as it represents an anomolous
allocation (specifically the assignment of some 250 million multicast addresses).
But what can we determine from these plots? Perhaps there is some relationship

that is visible. Though we can see how these numbers have been handed out, it is



14000

12000

10000

8000

6000

AS Allocations

4000

2000

14000

12000

10000

8000

6000

AS Allocations

4000

2000

14000

12000

10000

8000

6000

AS Allocations

4000

2000

AS Allocations by Day

L 1 L I e

L ’
011984 011986 011988 011990 011992 011994 011996
Day

AS Allocations by Month

011998

L
012000 012002

/

b L 1 I Lace

I
011984 011986 011988 011990 011992 011994 011996
Month

AS Allocations by Year

-
011998 01

2000

L = L L

. .
1984 1986 1988 1990 1992 1994 1996
Year

a) AS Allocations

L
1998

L
2000

IP Allocations

IP Allocations

IP Allocations

15

IP Allocations by Day
2e+09 T T T T

1.8e+09 -

166409 | A
14409 |- e AR
126409 |- - f
1e+09 1
8e+08 [ 1
6e+08 [ 1
4e+08 - 1

2e+08 B

L L L L L 1 i
011984 011986 011988 011990 011992 011994 011996 011998 012000 01200:

Day

5]

IP Allocations by Month
2e+09 T T T T

1.8e+09 -

1.6e+09 -

1.4e+09 -

1.2e+09 -

1e+09

8e+08

6e+08

4e+08 -

2e+08

W—wf_/w

L ST
011984 011986 011988 011990 011992 011994 011996 011998 012000
Month

L L AT

IP Allocations by Year
2e+09 T T T T

1.8e+09

1.6e+09

1.4e+09

1.2e+09

1e+09

8e+08 1

6e+08 - 1

4e+08

2e+08

I I L L T |
1984 1986 1988 1990 1992 1994 1996 1998 2000
Year

b) IP Allocations

Figure 3.3: Cumulative Allocations of a) AS numbers and b) blocks of IP addresses



16

IPs per AS (Monthly)
1.8e+06 T T T

II5$ perAS‘i

’\\/ "N

1.6e+06 - ‘ \ E
\

1.4e+06 - ‘ 4 b

1.2e+06 |- [ N g

le+06 |

IP Addresses

800000

600000

p

s

400000

200000 ™~ B

0 L L L L L L L L L
011984 011986 011988 011990 011992 011994 011996 011998 012000
Month

Figure 3.4: Ratio of IP addresses per Autonomous System over Time

difficult to draw any conclusions relating the number of ASes with the number of
hosts.

To better understand, we next plotted the ratio of IP addresses per AS. The
result is Figure 3.4. Again, the spike that appears about 1991 should be ignored for
the same same anomolous allocation mentioned above.

While it may seem that there is some relationship to be inferred, we conclude
that the use of IP allocations to determine host growth is misleading. There are
fewer IPs handed to ASes over time simply because more IP addresses are initially
allocated than are necessary. This is to accomodate growth in a network without
having to repeatedly request more IP space from the registries. Also, routing table
sizes can be reduced by advertising larger contiguous blocks of IP addresses.

These first attempts only reinforced a belief that IP ‘space’ could not be used
to accurately determine the information we desire. A true host count surely would

yield different results, and surely a host count did just that.
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3.2.2 Using Host Counts

It should now be apparent that a history of host appearances on the Internet is
important. After all, a building’s occupancy cannot be determined by its capacity.
Recall our two sources of information, Netsizer [30] and IDS [20], of which host counts
only from the latter are publicly available.

To better understand how IP addresses are assigned in relation to how they are
allocated, we plot the ratio of % in Figure 3.5. Note that, although this
ratio is growing, only 0.08% of all IP space is currently in use. This only reinforces
the need for a good host count.

Returning to the desire to understand Internet processes that are necessary to
build a relevant model we plot figure 3.6.

Now we can see a more accurate representation of average AS growth. To be

clear, this plot shows the appearance of new hosts within an AS over time. Notice
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the line seems near-linear.

But Figure 3.6 is skewed by astronomical notion of time. Hence we plot in
Figure 3.7 the number of ASes in host-time, where events are appearances of new
hosts rather than passing of days and months. The linear relationship hinted at in

the previous plot is now only more apparent and gives us reason to proceed further.



Chapter 4

Constructing a Simple Model

We motivate our model with observations on the growth of ASes and hosts over
time. Using AS number allocations collected from the three Internet registries and
estimates of the number of Internet hosts collected from the Internet Domain Survey
[20] , we plot the growth of ASes and Internet hosts over the last decade in Figure 4.1.

As one might naturally expect, both plots give evidence of exponential growth.
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Figure 4.1: Growth in the number of a) ASes and b) Internet hosts.

These observations provide starting points for our model.
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4.1 A Simple Model and its Analysis

We summarise the model provided in [18] constructed using the observations made
regarding exponential growth.

Let N(t) be the total number of ASes (‘N’ stands for ‘number’) and M (t) be the
total number of hosts (‘M’ stands for ‘mass’) in the system. The simplest growth
model consistent with the observations above is mathematically described by linear

equations

dN dM
“N N e M 4 aN. 4.1
o =V, o = PMta (4.1)

Here ¢ is the rate of creation of new ASes and p is the rate of creation of new
nodes. When a new AS is created, the host is given that new label, explaining the
gN term in Eq. (4.1). (For now, we shall assume that there is no merging of ASes;
moreover, we assume that links do not affect growth processes and hosts and links

never disappear.) Solving for N and M gives

N(@) = N(0)et, (4.2)

M(t) = Aée + BN(t), (4.3)

with A, B being simple functions of the initial data M (0), N(0) and the parameters
p and ¢. At the special point p = ¢ the coefficients diverge (A = B = c0), reflecting
that the exact solution is actually a linear combination of e’* and teP'. Thus the
average AS size (s) = M (t)/N(t) could in principle exhibit the following asymptotic
behaviors: finite  when p < g,

(s) ~¢InN when p = ¢, (4.4)

N®P-9/a  when p > q.

We show later (Figure 4.3) that the average AS size grows over time (and with
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N), thus the inequality p > ¢ must hold.
Let N,(t) be the number of ASes with s nodes. This size distribution satisfies the

rate equation!

dNy
dt

=p[(s —1)Ns_1 — sNs] + gNds 1. (4.5)

We already know N(t) = N(0)e?. Solving Egs. (4.5) recursively and expressing in
terms of IV rather than ¢ yields
N, =n,N+ Y C,;N~*/a. (4.6)
j=1
The coefficients C;; depend on initial conditions while n, are universal. Asymptoti-
cally, only the linear term n;N matters. To determine this dominant contribution,

we insert N(t) = nsN(t) into Eq. (4.5). We arrive at the recursion relation
q _
(s + > ns=(s—1)ns 1 (4.7)
b

for s > 2, while for s = 1 we recover n; = ¢/(¢+p). A solution to recursion (4.7)

reads

¢ TET(2+9)

s = . (4.8)
q
¢+p T(s+1+9)
Asymptotically, the ratio of gamma functions simplifies to the power law,
ng~Cs™, (4.9)

WithT:1+q/pandC’:$F(2+z%).

'In the large time limit, the random variables N, (¢) become highly localized around correspond-
ing average values.
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4.2 Estimating Growth Rates

In order for us to validate the proposed growth model, we first need to estimate the
parameters p and ¢, the growth rate of the number of hosts and ASes, respectively.

To estimate these rates, we explored a number of alternatives (detailed in Chap-
ter 3) before selecting the methods we deemed most appropriate. For example, BGP
tables appear to be a viable alternative for estimating both rates; however, logs only
date back to around 1997; moreover, not all IP addresses within a prefix advertised
in a BGP prefix are actually in use. The best available method seems to be to use
the publicly available routing number allocations provided by the ARIN, RIPE, and
APNIC registries. Each keeps a public record dating back to the early 1980s of rout-
ing number allocations which include, among other details, the routing number and
its type (IP or AS), the date on which the number was allocated, the quantity (and
in the case of IP allocations, the starting address). It should be noted that RIPE
does not publish AS number allocations, though many allocations to that region have
been recorded by ARIN.

From these tables we derived the plot of AS growth in Figure 4.1(a), and plotted
again on logscale in Figure 4.2(a). Here we assume that an AS typically comes into
existence on the Internet shortly after it is allocated, thus the allocations provide a
good estimate for gq. Also recall that we are primarily interested in the overall rate
of growth. Fitting this logscale plot to a line reveals that AS numbers are indeed
allocated at an exponentially growing rate. We then estimate ¢ by the slope of the
linear regression fit to the curve, or approximately 3.8 - 1074

Estimating p, however, is more difficult. As noted in Chapter 3, allocations of
IP addresses are made in bulk by Internet Registries; hence many more IP addresses

are allocated than the number of IP addresses in use. The Registries’ allocations
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Figure 4.2: Left a) AS Growth, Right b) Host Growth.

statistics show that approximately 50% of IP addresses have been allocated and that
the number of allocated IP addresses is growing much less than exponentially, as can
be seen in Figure 3.3. We conjecture this trend does not result from the Internet
growing less than exponentially, but rather from a growing tendency to better manage
allocated IP space.

The Registries provide an excellent record of AS births, but it is infeasible to
record IPs in use (and hence, record births of hosts and routers on the Internet).
The records of host growth we considered were Telcordia’s Netsizer [30] (no longer
a publicly available service) and the widely cited Internet Software Consortium’s
“Internet Domain Survey” project. The host count they develop is based on a reverse
DNS process; details can be found at [20]. We can be certain that Registry IP
allocation records do not provide host growth statistics since (using IDS numbers)
usage of allocated IP space has increased from less than 1% in 1994 to 8% in 2002.

Using the numbers published by IDS, we plot host growth in logarithmic scale in
Figure 4.2(b). This plot seems to show a change in slope around 1996. Using the
more conservative growth rate, ¢.e. the best fit line of the curve following 1996, we

find p to be about 4.8 - 10~%.
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We emphasize that while host count may well underestimate the actual number
of hosts on the Internet, we are primarily interested in estimating the slope of the

curve; our model is unaffected by scaling factors.
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Figure 4.3: Number of Hosts vs. Number of ASes

4.2.1 Analytical Validation

Our model also makes a very specific prediction on the relationship between N and

M as the system evolves. From Eqn. 4.4, we expect

(5) = M()/N(t) ~ N(t)F-9/1,

ie. M ~ NYP-9/a Indeed, we see clear evidence of a power-law fit between M
and N when we plot their relationship on log-log scale in Figure 4.3. The predicted
slope is 1.26 and the slope of the linear regression is 0.56, so while the model is in

the right ballpark, some additional investigation is warranted.
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4.2.2 Empirical Validation
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Figure 4.4: Simple Model Predictions vs. Measurements

We first compare the model’s predictions using our estimates for p and ¢ against
empirical data from 1999 and 2002 in Figure 4.4. Size distributions drawn using
Mercator data in 1999, and Skitter data in 2002. The pdf is provided to show rough
agreement in the body of the distribution, the log-log plot of the ccdf shows the
quality of the fit in the tail. We describe our efforts to improve the simple model’s

predictive power and accuracy next.



Chapter 5

A More Complete Model

5.1 Modelling AS Mergers

The model described in Section 4.1 is appealing because of its simplicity, but fails
to account for a set of prominent events in our datasets — namely, mergers between
pairs of ASes. In our datasets, we observe these mergers, or coalescence events, in
our BGP logs when we witness one AS begin to advertise the set of IP addresses
formerly advertised by another AS that then disappears. We provide our methodol-
ogy for detecting these events in full detail in Section 5.3.1. Coalescence markedly
impacts the manner in which ASes grow, since they enable an AS to grow by a mul-
tiplicative factor at a single timestep. In this chapter, we describe how to augment
the model to incorporate mergers, analyze the asymptotic behavior of the model and
its predictions, and compare the predictions to measurements derived from our data
sets.

Now, we shall take into account the increase of the total number of nodes, labels,
and the merging between different labels, using the same assumptions as before.

Recall the notation introduced in Chapter 4. The model is now described by linear
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equations

dN aM
— = (g—1r)N —— =pM +gN.
dt (g = 7N, dt p g

The new parameter, r, is the rate of coalescence, i.e. the rate at which two ASes

decide to merge. As before, solving for NV and M gives differential equations:
N(t) = Noels™t and M(t) = Ae?* + BN(t). (5.1)

Following the same analysis of asymptotic behavior as in Section 4.1, and reasoning
as before that the average AS size is large and growing, the inequality p > ¢ —r must

hold, which implies (s) ~ N®=atr)/(a=r),

5.2 Implications of the Model

Let N,(t) be the number of ASes with s nodes. This size distribution satisfies the

rate equation

dN
dt = D [(8 - 1)N5,1 - SNS] + qN(Ss,l (52)
rN s
+ - > KiN;N; — 2N, Y KN ¢ .
i+j=s j=1

The first term on the right-hand side accounts for growth that proceeds with rate
p: When a node is added to an AS with s — 1 nodes, the number of ASes with s
nodes increases by one; similarly when a node is added to an AS with s nodes, the
number of ASes with s nodes decreases by one. The next term on the right-hand
side of Eq. (5.2) accounts for nucleation, with rate ¢, of new ASes (of size one; one

can also study more general situations, e.g., sizes of new ASes can be drawn from a
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distribution). The last term describes coalescence that proceeds with rate r. This
term contains a symmetric “kernel” Kj;, the rate of merging between ASes with i
and j nodes; K(t) = >, j>1 K;;N;(t)N;(t) is the proper normalization factor.

Our ongoing work focuses on identifying which kernel most accurately reflects
actual coalescence behavior. In what follows, we outline the derivation of the asymp-
totic behavior of the simplest kernel (an exact analysis is provided in the appendix)

and briefly motivate a more general class of kernels, which we can also analyze.

5.2.1 Constant Kernel

Setting K;; = 1 transforms Eq. (5.2) into

dNj
dt

= pl(s —1)Ns—y — sNg| + qNds, (5.3)

+ %{ ) NiN]-—2NNS}.

i+j=s

Equations (5.3) can be solved recursively. For instance, the number of ASes of the
smallest possible size evolves according to Ny = ¢N — (p + 2r)N;. A solution to
this equation is a linear combination of two exponents. Asymptotically, the solution
simplifies to Ni(t) = nyN(¢) with ny = ¢/(p+ ¢ + r). Similarly, each N,(t) grows
linearly with N. Writing

N,(t) = n.N (D), (5.4)

we recast Eq. (5.3) into the recursion relation

(q - r)ns = p [(8 - 1)”5—1 - Sns] + q55,1 (55)

+ r Z nn; — 2rns.
i+j=s

Further discussion and analysis is available in [18].
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5.3 Estimating the Rate of Coalescence

Unfortunately, there is no obvious means of tracking AS mergers on the Internet,
since we are not aware of any publicly available records providing this information.
We therefore resort to making inferences, specifically, by examining aggregated BGP
table archives stored by RouteViews [32] at U. Oregon, NLANR and PCH since
1997. Our strategy is to to identify signatures of these merger events from compar-
isons of sets of daily BGP snapshots This strategy is complicated by the presence of
considerable daily churn [9], clouding events of interest with substantial noise.

We argue that aside from churn, there are two reasons for an AS to disappear

from daily BGP snapshots.

Coalescence: The IP prefixes formerly advertised by one AS are now advertised

by a different AS, and the former AS disappears from BGP tables.

Evaporation: The IP prefixes formerly advertised by one AS simply disappear
from the BGP tables.

Note that our methods cannote detect AS mergers in which the acquiring AS retains
use of the acquired AS number as well as its own.

To infer these two events, we first identify all “suspicious” events on consecutive
daily BGP snapshots. We define a suspicious event to be either 1) the occurrence of
identical IP prefixes advertised by two different ASes on successive days, or 2) an IP
prefix advertised by one AS on one day, followed by a day in which that exact prefix
does not appear, moreover the longest matching prefix including the missing prefix
is advertised by a different AS. Of course, many of these suspicious events are due to
normal BGP churn and its attendant causes. Therefore, the remaining obstacle is to

distinguish an actual merger or disappearance from an instance of BGP churn. It is
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difficult to distinguish coalescence from evaporation using our methods, since an AS
whose [P prefixes evaporate into a larger block of address space is indistinguishable

from an AS which coalesces with the AS advertising the surrounding IP block(s).
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Figure 5.1: AS Reappearance Time. Left: 2000, Right: 2001.

The distinguishing characteristic we use is to consider the duration of time that
the AS associated with one or more suspicious events actually disappears from the
BGP logs (our concern is that AS numbers are eventually reused). To determine an
appropriate cut-off threshold, we measured the duration it takes in days for an AS
number to reappear after failing to advertise all of its IP blocks, using RouteViews’
BGP tables spanning 01,/02/2000 - 11/29/2000, and 02/20/2001 - 02/28/2002. Fig-
ure 5.1 presents histograms (bin width = 5 days) of the time taken for an AS number
to re-appear once it has relinquished its IP space. For clarity, we remove the first
bin, which clearly corresponds to BGP churn and constitutes the overwhelming ma-
jority of disappearances. In total, 89% and 79% of ASes reappeared in the 2000 and
2001 datasets, respectively, and the majority of these returned within a few days of
disappearing. For this reason we feel it is reasonable to assume that beyond a cutoff
of between three months to a year, the suspicious event is not due to churn. We

record a suspicious event as a merger when,
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e there is a handover of IP space as discussed above, and
e the AS number losing IP prefixes then disappears, and

e the AS number does not return in the observed interval.

Applying this analysis to the BGP data allows us to measure the quantities needed
to estimate r: L(t) is the total number of ASes present in the tables at time ¢; and
C(t) is the total number of ASes that have merged into another AS by time ¢. Then,

using Eqn. (5.1),

L(t) ~ et ~ (L(t)+ C(t))/e"

L@®)/(LE) +C[#) ~ e

5.3.1 Validation of the Merger Model
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Figure 5.2: Rate at which ASes Merged in the 2001 Dataset.

In Figure 5.2 we plot L(t)/(L(t) + C(t) on semi-log axes, yielding an estimate

r ~ 1.8- 10°% Solving for n, in Equation 5.5 allows us to summarize the size
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distribution predicted by the coalescence model in Figure 5.3. As before, only a fit
with the body can be seen from the pdf, so a log-log ccdf is provided. Overall, while
we find that the merger model is more accurate than the simple model in predicting
the distribution of small to medium-sized ASes, it still does not give an accurate
prediction of large ASes in the tail of the distribution. More work is necessary to
investigate the nature of the kernel in a merger which we hope will allow us to better

characterise merger events.
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Figure 5.3: Coalescence Model Predictions vs. Measurements

Having discussed in detail two models to describe AS growth processes, we now
turn our attention to the influence these processes exhibit upon the structural devel-

opment of inter-AS structure, specifically with respect to AS degree.



Chapter 6

AS Degree Formation

The previous section showed that a power-law size distribution emerges in the pres-
ence of exponential growth of ASes and hosts. In this section we extend that idea to
incorporate AS degree.

The key assumption we make is that as an AS grows, it will establish links with
other ASes. In this section, we show that if link formation occurs in rough proportion
to an AS’s growth, then AS degree distribution will show high variability. More
precisely, if each time a new node is added to an AS it forms an inter-AS link to some
other randomly chosen AS with some fixed probability, then AS degree distribution
will show high variability. Furthermore, this need only be in “rough proportion;” for
example, we show in Section 7.3 that the result still holds if connection probability
varies with the log of the AS size.

Any such link formation process is simple since it only depends on growth, it is
flexible since there are no influencing agents other than size, and no global knowledge
of other AS degrees is required to make link formation decisions. In fact, no global
knowledge of any kind is required.

The simplest interconnection process is detailed in the algorithm below. Recall
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the notation from Section 4.1 where ¢ is time and N(¢) is the number of ASes in the
system. Let M;(t) be the mass of AS i, ; be the time AS i is inserted into the system,
and x be some fixed probability. At each timestep ¢ two kinds of events occur: some

new ASes are born, and existing ASes grow. Starting at ¢ = 1:

i. Calculate the total number of ASes according to N(t) = e?".

ii. Insert [N(t)|— |N(t—1)| new ASes with a size of 1 and out-degree of 1, where

the neighboring AS is chosen uniformly at random.

iii. Calculate the number of total routers within AS 4 according to M;(t) = eP(=%).

iv. For each AS i, insert | M;(t) | — | M;(t—1)] new routers. Each new router creates
an inter-AS edge with probability x, and if an edege is created, then invoke a

select operation to determine to whom the new AS-to-AS link is created.

The select operation is left unspecified to emphasize the flexibility of the link
formation process and its dependence only on the AS size. We consider only the
simplest selection operation, where a target AS is chosen uniformly at random.

Even though this is a random connection process, ASes that are larger in size will
also have higher degree. Thus, the degree distribution that results should be highly
variable. We show in the following sections that a highly variable degree distribution
does result, and that this distribution fits well when compared against distributions

observed in the Internet.



Chapter 7

Validation

We validate our analysis and simulation results against empirical degree distributions

in the following sections.

7.1 Empirical Data Sources
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Figure 7.1: Degree Distributions Inferred from 4 Sources.

Before we can discuss our model’s influence on inter-AS connectivity, and the
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validity of the results, we first discuss the empirical observations themselves. There
are a number of sources from which we can draw AS-level degree distribution. We
infer empirical degree distribution through two distinct methods, applied to three

different sources.

7.1.1 BGP Adjacency

The first method is to infer AS degrees from BGP tables. For this purpose we use
BGP tables from the RouteViews project [32] collected in April 2001 and February
2002. Recall from Section 3.1.2 that an entry in a BGP table consists of an IP block
represented by its prefix, followed by a sequence of ASes (an AS path) that must be
traversed to reach an IP address within that range. We can infer an adjacency in
the AS-level graph for a pair of ASes whenever they appear in succession within any
path.

While this inference method typically avoids false positives (adjacencies which
are not actually present, but appear to be present), it suffers from false negatives,

since not all AS adjacencies are advertised across BGP [14].

7.1.2 AS Overlays

A second method for determining AS degrees is to annotate a router-level map with
each router’s associated autonomous system. Nodes in the router-level graph are
labeled using IP addresses. In the overlay produced by annotating the router-level
graph, each node is further labeled with its associated AS. The approach is detailed
in [13]; we summarize the approach here. An IP is associated with an autonomous
system by performing a lookup in BGP tables (archived from the same time period in

which the router-level map was collected). First, find the longest matching prefix of
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an IP address within the BGP table; the last entry in the path vector is the number
of the AS which owns that IP address. A complete inspection of every edge in the
annotated router-level graph reveals an inter-AS edge wherever any pair of nodes are
labeled with distinct AS numbers.

This method has numerous advantages over AS maps inferred from BGP tables
directly. It provides an AS map at a finer granularity; aggregated ASes are revealed
as are multiple links between ASes. However, this method suffers from the following
drawback. Any single BGP table is potentially incomplete and can be limited by
path hiding from parent ASes (in order to reduce message and table sizes). Sets of
BGP tables are used to reduce the magnitude of this problem, with the belief that
more BGP tables reveal more information. However, no AS can observe the existence
of another AS which is hidden by its parents.

We draw on router-level maps gathered from the Mercator project [19] in August

2001, and another provided by the Skitter project [33] gathered in January 2002.

7.1.3 Summary of Empirical Observations

Statistics, dates, and sources of all datasets drawn from RouteViews, Mercator, and

Skitter are summarized in Table 7.1.3.

Source ASes | Edges | Date Method
Route Views | 10854 | 47847 | 04/01 | BGP Adjacenies
Route Views | 12875 | 57385 | 02/02 | BGP Adjacenies
Mercator 3478 | 13590 | 08/01 AS Overlay
Skitter 9206 | 38334 | 01/02 AS Overlay

Table 7.1: Summary of Data Sources

The degree distributions plotted in Figure 7.1 show that all methods and sources
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yield similar results. For subsequent comparisons, we use the distribution drawn
from the autonomous system overlay constructed using the Skitter dataset collected

in January 2002 as a baseline for comparison against simulation results.

7.2 Constant Connectivity Models

Section 4.1 showed that the size distribution that results from our model has a power-
law tail. However, since the growth model does not directly describe degree, we turn
to simulation to determine the influence of size and growth of the simple model on
degree.

The simulation is executed using the algorithm in Section 6 using rates p =
1.1 x 1072 and ¢ = 8.7 x 10~* estimated in Chapter 4.2.2. The degree distribution
predicted by our model is plotted against observed degree distributions in Figure 7.2.
We found empirically that using fixed probability = 0.10 results in vertices of
our simulated graphs having a roughly commensurate average degree to that of the
Skitter dataset. Where the discrepancy does occur, the general trend is a tendency
for our model to underestimate the degree of small to medium sized ASes, while
overestimating the degree of larger ASes.

Figure 7.2 shows that the predicted degree distribution is similar to that of the
Skitter dataset. Discrepancies can potentially be removed by refining the decision
processes used to form AS to AS connections in the model. In the following section,
we explore a refined model which accounts for the size of the AS when determining

the relationship between growth and link formation.
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Random AS (x =0.10) ——
-05 Skitter - |

log(Pr[X >x])
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log(degree)
Figure 7.2: Predicted Degree Distribution where z = 0.10

7.3 Size-Based Connectivity Models

The previous section shows that link formation occuring with constant probability
during growth, while reasonable, could be more accurate. The relationship between
predicited and empirical distributions shown in Figure 7.2 suggest that there is room
for other practical influences on inter-AS link formation. Here we demonstrate the
flexibility of our model by discussing an approach that takes into account the actual
size of the AS when choosing to create new links.

We presuppose the following notion: as an AS grows, the ratio between its degree
and its size will shrink, and so a constant probability when deciding to create new
links may not best relate degree to size. Intuitively, the ratio between the degree of
an AS and its size is analogous to the notion of a surface-to-volume ratio. In graph-

theoretic terms, this ratio is often referred to as the conductance of a subgraph.

Definition 1 The conductance of an autonomous system i with size (mass) M; and

. d
out-degree d; s i



40

Observations of conductance are estimated from Mercator and Skitter datasets
discussed in Section 7.1, and shown in Table 7.3. This table shows that as an au-
tonomous system grows, the average conductance shrinks. While the actual conduc-
tance of ASes of a given size varies considerably, this trend holds on average. Note
that ASes of size 1 are excluded from the smallest range since an AS of size 1 must
have conductance of at least 1, and so may bias observations. Also, average con-
ductance in the largest ASes appear to break this trend. This may be an artifact of

noise from a small number of data points.

Data Points Average Conductance
Size Range Mercator | Skitter | Mercator Skitter
2—-10 1404 4254 0.492 0.866
11 — 100 1429 3502 0.242 0.596
101 — 1000 359 1050 0.134 0.313
1001 — 10000 38 131 0.108 0.213
10001 — 100000 1 10 0.20 0.249

Table 7.2: Conductance of ASes

We believe that this decrease in conductance is natural, driven by the decreasing
necessity to add inter-AS links as an AS grows. For example, as previously mentioned,
an AS of size 1 must have a minimum degree of 1 (otherwise it is not connected to
other ASes, and hence cannot be a part of the AS-level map). We speculate that
it is more often the case that routers are added to a closed network to increase the
capacity and range of the network itself, rather than to connect to other ASes, and
so a connection probability that decreases as an AS grows is reasonable.

The ratios and ranges in Table 7.3 show diminishing conductance as AS size
increases. To better fit the data observed in Table 7.3, we applied a logarithmic
correction factor to implement a “diminishing probability” function, L. This function

takes the size of the autonomous system M;, and a fixed probability x as parameters,
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and returns a probability value:

x, when M; < 10,
L(z, M;) = (7.1)
m, otherwise.
As before, we use the simple select operation which returns a neighboring AS
chosen uniformly at random. One point of interest is that L governs only those ASes

where size > 10, otherwise the probability of connecting to another AS is artificially

inflated for the smallest ASes.

x = 0.20/ log(size)

log(Pr[X >X])

0 05 1 15 2 25 3 35 4
log(degree)

Figure 7.3: Diminishing Probability where z = 0.20.

The distribution that results when applying the diminishing probability function
is plotted against Skitter data in Figure 7.3, using x = 0.20, the value providing the
best fit. The two curves are nearly identical, sharing a similar slope, and are virtually

indistinguishable throughout the entire body of the distribution.



Chapter 8

Conclusion

Understanding the dynamics of AS size distribution is important both for modeling
purposes and understanding connectivity. In this thesis we have proposed two models
for the evolution of the AS size distribution. We further explored a model for how
highly variable degree distributions may arise in the AS graph as a result of the
evolution of AS size.

First, we have provided and analyzed a growth model with rate equations. We
have discussed methods for estimating the parameters of this model and shown the
size distribution of ASes that it predicts. The model’s predictions exhibit size dis-
tributions that are in general agreement with empirical data, both in the body and
the tail of the distribution. However, discrepancies exist between model and data,
particularly in the shape of the tail.

Second, we have suggested that it is important to incorporate the merging of
ASes in our models. We show how to do so, and specify the resulting rate equation.
The details of this model are highly dependent on assumptions about the manner in
which ASes merge, which is captured in the merging kernel — the likelihood that two

ASes of given sizes will merge at any timestep. We solve this model for the constant
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kernel, and show how to estimate the associated parameters. The results point to
the need for further analysis of the processes by which ASes merge.

Lastly, we extended the growth model to connect AS nodes. We believe this is
the first such size based Internet model for AS-labelled graphs. It is instructive to
compare this model with the B-A model.

Like the B-A model, we assume that high variability has arisen via a “rich get
richer” phenomenon resulting from an exponential growth process. However the B-
A model assumes preferential connectivity, meaning that new nodes probabilistically
prefer to connect to well-connected existing nodes. Besides requiring that each AS be
aware of the degree of each other AS (a strong assumption of global knowledge), the
B-A model strongly constrains the resulting connection pattern. This is restrictive; as
discussed in [28], many graph realizations are consistent with a given degree sequence,
and different realizations may have very different properties. In fact, [27] shows that
the AS graph exhibits a high degree of clustering, an effect that is not captured by
the particular connection pattern created by the B-A model.

In contrast, the assumption in our model is that AS sizes are the underlying cause
of high variability, and that a large AS will naturally tend to have a large degree.
From this standpoint, our model allows for a much wider range of connection patterns
than the B-A model, since the degree of an AS grows as a function of its size, but
the choice of which AS to connect to can be specified independently, as a separate
selection operation. In this thesis we have explored the selection operation in which
growing ASes choose peering partners uniformly at random; however we expect that
any choice of peering partners that is made without regard to degree (and including
those that exhibit a high degree of clustering) will likely show characteristic high
variability.

Our results demonstrate that a simple and natural model incorporating exponen-
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tial growth alone is sufficient to drive both a highly variable AS size distribution and
a highly variable AS degree distribution. We motivated this model with datasets
that demonstrate exponential growth both in the number of hosts and the number of
ASes, and validated the model by comparing the degree distribution our model pre-
dicts against observed degree distributions drawn from BGP tables and AS overlay
maps. We also provide an analysis of the power-law tail of the AS size distribution
that results when our methods are employed.

We have integrated this model into the publicly available BRITE [8, 25] topology
generation framework. In future work, one might investigate selection operations that
incorporate real-world considerations such as locality, clustering and performance
optimization, to provide an even more realistic AS growth model. As part of this
effort, better mining techniques of AS time-series data extracted from BGP logs are
necessary to better understand the underlying nature of AS growth, interconnection
and merging over time [18]. We hope this model is the first in a line of more flexible

size-based approaches to Internet modelling.
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