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Abstract

Micro-sensor and radio technologies now permit the manufacture of cheap sensor

or embedded devices deployable en masse. Applications appear in a diverse set of

environments for far reaching applications including but not limited to structural

monitoring, target tracking, and early warning systems. When deployed to create a

sensor network, have no foreknowledge of their environment. In a network of this

type traditional networking techniques are unsuitable. In general, sensing and em-

bedded devices are shaped by four constraints: limited power supply, small memory,

unattended operation, and the error-prone nature of wireless communications.

Our work is motivated by the hypothesis that within view of each node are

geometric features that impact network characteristics and behaviour. The central

objective in this thesis is to investigate the geometry of the network graphs. Doing so

allows us to identify some of the unique features of the network that constrain larger

problems.

We first propose boundary detection solutions using two well-known structures.

First with the convex hull we build a localised heuristic, local convex view (lcv), that

is designed on the premise that a node on the convex hull of a small region of the

network is likely on the convex hull of the whole network. We show positive results

via analysis and simulation and discover that the geometric properties are directly

responsible for its resilience to error. We propose propose further the alpha-hull,

whose structure can reveal details in the ‘shape’ of a set of points. We find that
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by selecting the α-parameter carefully, it is possible to infer the network-wide α-hull

from local communications and computations.

We also investigate the limits of routing according to left- or right-hand rule

(LHR). Using LHR, a node upon receipt of a message will forward to the neighbour

that sits next in counter-clockwise order in the network graph. When used to recover

from greedy routing failures, LHR guarantees success if implemented over planar

graphs. We identify network constraints that lead us to propose the Prohibitive-link

Detection and Routing Protocol (PDRP) that can guarantee delivery over non-planar

graphs. As the name implies, the protocol detects and circumvents ‘bad’ links. Our

implementation of PDRP reveals the same level of service as face-routing protocols

despite preserving most intersecting links in the network.
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Chapter 1

Introduction

Micro-sensor and radio technologies are permitting the manufacture of cheap sensor

or embedded devices deployable en masse. Applications appear in a diverse set of

environments for far reaching applications including but not limited to structural

monitoring, target tracking, and early warning systems [3]. Each of these sensors is

identical and, when deployed to create a sensor network, have no foreknowledge of

their environment. In a network of this type traditional networking techniques are

unsuitable [22]. Moreover, sensor networks demand a level of context awareness for

which there was previously a limited body of previous work. In general, sensing and

embedded devices are shaped by four constraints [77]: limited power supply, small

memory, unattended operation, and the error-prone nature of wireless communica-

tions.

When researching solutions to context-awareness and routing problems in large

sensor networks it is natural to work with the graph 1 that corresponds to network

nodes and links. As such it is natural to look to disciplines in which graphs are

well studied to find solutions to the problems faced by sensor networks. The body

of knowledge generated by the graph and computational geometry communities has

1For our purposes we use ‘graph’ to refer to the network embedding, where the network graph is
imposed upon a 2-dimensional plane.
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1.1. Motivations and Objectives 2

been indispensable to the networking community. Still, the gap between theory and

practice has yet to be bridged.

1.1 Motivations and Objectives

Our work is motivated by the hypothesis that within view of each node are geometric

features that impact network characteristics and behaviour. The central objective in

this thesis is to investigate the geometry of the network graphs. Doing so allows us

to identify some of the unique features of the network that constrain larger problems.

We emphasise to our reader the subtlety of this approach: It is common to shape or

change the network to meet the needs of established solutions to related problems.

In contrast, we seek to better understand network geometry so as to better shape the

solutions to meet the demands of the network.

We offer as an analogy the urban sprawl that is endemic in North America. North

American cities have been built around ‘innovations’ such as the automobile [51].

This is an example of tailoring the environment to a specific system. The contrasting

approach would be to construct a city according to the needs of ‘community’, thereby

meeting the constraints of its inhabitants. With respect to sensor networks the trend

is to constrain nodes and links to meet the needs of a system; by contrast we seek

to identify the constraints imposed by node and link features so that better systems

may be designed.

1.2 Thesis Contributions

From the perspective described we approach boundary detection, and position-based

routing. Each is considered a vital service for sensor-related applications. Problem

summaries and contributions appear in the following sections. Detailed discussions

are reserved for relevant chapters.
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1.2.1 Boundary Detection

Context-awareness is increasingly important in wireless and sensor networks. When

available, knowledge of position, nearby physical obstacles, or topological features, can

be exploited to provide better communication protocols and deployment techniques

in resource constrained environments.

Intuitively, many pure sensing applications benefit from knowledge of network

boundaries ([8, 12, 24, 28, 71, 101, 110, 126]). Nodes along the outer edge of the

network, for example, are assumed to be the best candidates for beacons in virtual

coordinate constructions. Here the assumption is that the finest resolution in coordi-

nates appear using a set of beacons that are furthest apart. Perceived network edges

also may bound holes in the network or other regions of interest. Such regions may

indicate physical boundaries or node failures due to environmental effects, so that

additional nodes may be deployed.

We propose boundary detection solutions using two well-known structures. Our

investigation begins with the convex hull, a structure that bounds a set of points in

space. We build a localised heuristic, local convex view (lcv), that is designed on

the premise that a node on the convex hull of a small region of the network is likely

on the convex hull of the whole network. We show positive results via analysis and

simulation and discover that the geometric properties are directly responsible for its

resilience to error.

Our investigation continues using the generalisation of the convex hull, the alpha-

hull, whose structure can reveal details in the ‘shape’ of a set of points. We find that

by selecting the α-parameter carefully, it is possible to infer the network-wide α-hull

from local communications and computations.

In these works we tailor both structures in a way that reveals the nodes and

edges that bound the network.



1.2. Thesis Contributions 4

1.2.2 Position-Based Routing

Position-based routing protocols have long been regarded as ideal for sensor networks.

They are generally simple in operation, need only local communication, and store

constant state.

The construction of network subgraphs appropriate for position-based (or ge-

ographic) routing protocols has, to date, remained a complex problem. These sub-

graphs are needed to recover from the local minima problem (see [2, 15]) that prevents

delivery and plagues position-based protocols. Network subgraphs constructed using

only 1-hop information risk inaccuracies that cause routing failures. If permitted to

cooperate, nodes may construct a network subgraph that remedies any inaccuracies.

Yet the energy needed to power the many needed rounds of communication risks being

prohibitive in such a resource-constrained environment. The ideal wireless network

subgraph would a) require only 1-hop information and b) acquire such information

passively.

Our approach is to understand the causes for a position-based routing protocol to

fail to recover from local minima and deal with those causes, directly. We have chosen

to investigate the limits of routing according to left- or right-hand rule (LHR). Using

LHR, a node upon receipt of a message will forward to the neighbour that sits next in

counter-clockwise order in the network graph. (Alternatively, clockwise order if using

right-hand rule.) When used to recover from greedy routing failures, LHR guarantees

success if implemented over planar graphs; for this reason it is often called ‘face-

routing’. We note, however, that if planarity is violated then LHR is only guaranteed

to eventually return to the point of origin. Our work seeks to understand why.

The result leads us to propose the Prohibitive-link Detection and Routing Pro-

tocol (PDRP). As the name implies, the protocol detects and circumvents ‘bad’ links.

Our implementation of PDRP reveals the same level of service as face-routing proto-

cols despite preserving most intersecting links in the network. The design of PDRP
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was made possible by an enumeration and analysis of the challenges faced by LHR

in general networks. It is our belief this approach may be used to tailor additional

routing protocols to the constraints of the network.

1.3 Thesis Contents

To better place our work in context we discuss previous and related work in Chapter 2.

In Chapter 3 we describe an algorithm to solve the boundary detection problem

using convex hulls. Though it is heuristic in nature we find that it performs well

in error-proned environments. We augment the boundary-detection algorithm using

alpha-hulls in Chapter 4. An analysis of the network geometry reveals that, using the

alpha-hull, an accurate and deterministic boundary will emerge. In Chapter 5 we turn

our focus to position-based routing. In this chapter, an enumeration and analysis of

the limits of left-hand rule leads to a protocol that that operates locally and preserves

most network links. Finally, some concluding remarks appear in Chapter 6.



Chapter 2

Related Work

2.1 Introduction

A growing number of sensor network applications require point-to-point services. In-

tuitively, pure sensing applications, where environment is monitored or events tracked,

require some geographical or geometric context for successful operation. In such a

network data interpretation and management is often tied to node positions. In addi-

tion to traditional sensing applications are a growing number of proposed applications

that require no knowledge of geography yet do require advanced point-to-point ser-

vices ( [36, 40, 102, 111]). Traditional Internet techniques are unsuitable in either

setting [22]. In this chapter we focus on the merits and challenges of algorithms and

protocols that provide boundary detection as well as point-to-point services through

position-based routing, where forwarding decisions are made by maximising or min-

imising some function of node locations within a coordinate system. The focus of

discussion is on those protocols suited to static sensor networks.

The remainder of this chapter is organised as follows: We begin in Section 2.2

with an overview of solutions to the boundary detection problem. There we discuss

geometric, probabilistic, and topological approaches in Sections 2.2.1, 2.2.2 and 2.2.3,

6
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respectively. A discussion of position-based routing protocols suitable to sensor net-

works begins in Section 2.3. Protocols where knowledge of sensor positions is assumed

to exist prior to protocol execution appear in Section 2.3.1. While the presentation is

cumulative, each section may be read independently of the others. In Section 2.3.2 we

present protocols where no a priori knowledge of position exists; amongst such pro-

tocols the routing element is coupled to the localisation mechanism. We summarise

our discussion in Section 2.4.

2.2 Boundary Detection

Our work appears amid a growing body of research on boundary detection. We focus

on works that are distributed or localised. Existing work may be classified according

to the taxonomy presented in [119] as either geometric, statistical, or topological in

nature.

2.2.1 Geometric Solutions

Geometric solutions to the boundary identification problem use the positions associ-

ated with each node. Our work falls into this category. To our knowledge the work by

Fang et al. [23] is the first such work. In it a geometric relationship is described, and

labelled as the tent-rule. The tent-rule is used by each sensor node in the network to

determine whether it lies on the boundary of a routing hole or of the network. We

exemplify the tent-rule using the pictorial representation that appears in Figure 2.1.

At each node x neighbours are sorted angularly. Now consider for every pair of neigh-

bours u and v where −→xu is left of −→xv, the perpendicular bisectors of each link (labelled

b1 and b2 in Figure 2.1). If the intersection of the bisectors falls outside of the range of

x then x has no neighbours closer to the region bounded by the communication range

and the bisectors (ie. the shaded region in Figure 2.1). Note this method indentifies
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boundary regions rather than nodes. This is particularly suitable in sensor networks

where sensing regions may be of particular interest.

O

u v
x

b1 b2

Figure 2.1: Tent Rule [23]: Node x has no neighbours closer to shaded region as

determined by the intersection of bisectors of adjacent links.

As stated previous, every node must evaluate its neighbourhood using the tent-

rule. Only at nodes where the tent-rule fails, may packets get stuck. Upon detecting a

failure, stuck nodes are responsible for initiating the following hole-mapping process.

Say node x sees that it abuts a boundary. It marks and sends a packet for for

discovery to the neighbour whose connecting edge is immediately counter-clockwise,

or left, from
−→
xd. Each node which receives the discovery packet appends the newly

traversed edge, then forwards the packet along the next counter-clockwise edge.

During the mapping process a discovery packet may traverse an edge that in-

tersects with another edge that was previously traversed. Where edge intersections

occur care must be taken. A traversal according to left-hand rule will always return

to the source node, yet intersections may cause the traversal to be led away from

the region that requires a map as can be seen in Figures 2.2(a) and 2.3(a). If an

intersection appears during a traversal of nodes t0 · · · tk−1 then we can say that tjtj+1

intersects titi+1, with j > i. There are only two such cases (the proof of which is
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titi+1

tj

tj+1

t0 = x

(a)

ti

tj

tj+1

t0 = x

(b)

Figure 2.2: “Inside” intersections, before and after pruning.

tj

ti

t0 = x

ti+1
tj+1

ti+2

(a)

tj

ti

t0 = x

ti+1

ti+2

(b)

Figure 2.3: “Outside” intersections, before and after pruning.
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available in [23]).

• Inside Intersections where node tj is not visible to nodes ti and ti+1. Upon

detection of this intersection node tj replaces segments ti+1ti+2 · · · tjtj+1 with

titj+1tj, before forwarding to the node that next appears in counter-clockwise

order from tj+1. The effect of this pruning may be seen in Figure 2.2.

• Outside Intersections where node ti is not visible to nodes tj and tj+1. Upon

detection of this intersection node tj ignores tj+1 and forwards instead to ti+1,

thereby ignoring the intersection all together. This example may be seen in

Figure 2.3.

The traversal terminates upon its return to x, having recorded the path P that

maps the complete stuck region. Once known, a recovery path is shared with all

nodes along the path so that resources required in processing and storing discovery

packets may be avoided in the future.

2.2.2 Probabilistic Solutions

Probability distributions underlying network deployments have been used to formu-

late statistical solutions. One solution, proposed by Fekete et al. [26], relies on the

idea that nodes close to network boundaries have fewer incident edges in the network

graph than internal nodes. The underlying assumptions rest with the fact that part

of the area covered by the communication range of a boundary node rests outside of

the network. Initially the algorithm initiates a leader election process and constructs

a network-wide communication tree. Statistical methods are then used by the leader

to derive suitable thresholds µ for density and α for area, to separate edge nodes from

internal nodes using the node degrees. These thresholds are used by remaining nodes

when counting neighbours and links to determine boundary status. Example results

may be seen in Figure 2.4.
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Figure 2.4: (Left) Boundary and near-boundary nodes; (Right) Loops determined to

enclose boundaries.

In [104] a similar statistical separation is proposed. Boundary nodes are sepa-

rated from internal nodes by using a ‘centrality’ measure which counts the number

of shortest paths that pass through a node. Higher centrality values occur among

internal nodes. As above, the network elects a leader and constructs a communica-

tion tree. The leader aggregates measurements from all nodes, it infers a centrality

measure, and returns the result to the network. A node declares itself to be on the

boundary of the network if its own measurements fall within the threshold given.

Statistical solutions generally hinge on uniformly distributed networks and ex-

ceedingly high densities. Our work in Chapters 3 and 4 shares in the view that

nodes at the boundary exhibit unique characteristics. Unlike statistical methods,

our approach is localised, is shown to be resilient to the underlying distribution, and

performs well in lower densities environments.
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2.2.3 Topological Approaches

Topological solutions appear in [31, 64, 101]. Kröller et al. propose a combinatorial

approach in [64]. It is the only deterministic work of which we are aware to produce

correct results without relying on the unit disc graph model (where all communi-

cation ranges are normalised). This solution comes at a high cost: It deals with

complex combinatorial structures in a distributed manner. Rao et al. [101] suggest

a single-beacon broadcast solution with a total messaging cost is similar to localised

approaches such as ours. Their work begins with a ‘hello’ message from a single bea-

con located at least 1-hop from the network edge. A node decides it is on the edge if

it finds itself to be furthest from the beacon amongst nodes in its 2-hop neighbour-

hood. While only heuristic in nature this method suffices for their purpose, which is

to construct a coordinate and routing system.

Funke [31] later proposed extensions to a similar idea. The idea, shown in Fig-

ure 2.5, relies on the observation that contours ‘rings’ of the network that are described

by hop-distances to a beacon, are broken when encountered by a network boundary.

This project was later refined by Funke et al. in [32]. Topological inference is used

by Wang et al. [119] to detect internal boundaries. Their detection method works by

identifying the distinct portions of similar paths that span the network.

Zhang et al. provide a planarization of the network graph that requires neither

uniform communication range nor node locations (see later, Chapter 2.3.1). They pro-

pose a progressive construction of trees and their arrangement as bipartite graphs. By

planarizing each bipartite graph recursively, the faces of network boundaries emerge as

a natural consequence. Finally, somewhat related is the contour tracking project [128].

Here the authors identify the boundaries of a binary event. A binary event may be,

for example, a chemical concentration beyond some threshold or a set of grouped tar-

gets. When tracking such events there are ‘binary’ nodes, labelled black and white,

with entire neighbourhoods either inside or outside of the events, respectively’. Using
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Figure 2.5: One beacon, three objects and the broken contours that are induced.

limited scope broadcast it is possible to identify the contour consisting of ‘grey-area’

nodes, nodes with some black neighbours and some white.

2.3 Position-Based (Geographic) Routing

In sensor networks IP-like routing techniques face scalability issues since node iden-

tifiers, if available, share no topological or geographical similarities and hence, no

addressing information. In addition, IP-like routing requires global cooperation and

dissemination of information which places undue demand on the energy constraints

that are inherent in such devices.

Current point-to-point routing solutions under investigation in the research com-

munity fall into one of two classes, on-demand routing [50, 98, 99], and position-based

(often referred to as geometric or geographic) routing [10, 30, 55, 66, 101]. Among

the former class routes are found as needed, often without any prior communica-

tions. These methods consume network resources and are known not to scale. In
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Known (Physical) Coordinates

Position-based Routing Protocols

Unknown (Virtual) Coordinates

Best Effort Delivery

Routing Hole Avoidance Routing Hole Recovery

Guaranteed Delivery Distance-based Hop-based

Figure 2.6: A classification of position-based routing protocols

the latter category, geographic routing decisions are based on relative locations of

sensors, and are generally greedy in nature (eg. nodes forward to neighbours that are

geographically closer to the destination).

In position-based routing the next hop is decided by evaluating the coordinates

assigned to neighbouring nodes relative to the coordinates of the destination and the

current node. For example, a node may choose to forward a message to its neighbour

that further minimises the remaining Euclidean distance to the destination, or that

maximises the savings in energy. Position-based routing is particularly attractive due

to its scalability. In the best case a node need communicate only its position and only

store information regarding its immediate one hop neighbourhood. Thus the storage,

length of communication, and data over which decisions are made, is O(1).

However, position-based routing is not without its drawbacks and challenges.

When positions are known, for example, messages may get trapped in local minima

where no neighbouring nodes further optimise the decision criteria. When positions

are not known, there exists the additional challenges of establishing and maintaining

some coordinate system in order to determine node positions in the network. The lo-

calised nature of position-based routing may also render algorithms blind to obstacles

that might cause routing decisions to fail.

Until recently the focus of position-based routing has been on the design of

protocols that assume the existence of a globally known coordinate system, for exam-
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ple, through pre-programming or the Global Positioning System (GPS). More recent

advances demonstrate that it is possible to establish a network-centric coordinate sys-

tem, the design of which is often coupled to the routing mechanism. Our attentions

concentrate on families of algorithms that are thought to be feasible, and in the case

of [55, 59], have implementations in development.

Position-based routing algorithms for static sensor networks may be classified

according to the chart in Figure 2.6. This chart matches the categorisation of position-

based routing protocols used to organise this chapter. Our discussion continues in the

next section by introducing the topic that follows the left branch of our categorisation,

those routing protocols that assume sensors are aware of their physical coordinates.

2.3.1 Routing with Known Positions

It is natural, when investigating position-based routing algorithms for sensor net-

works, to assume the a priori knowledge of location information via pre-programming

or GPS-like services. Thus, no efforts are made by these protocols to establish loca-

tion within a network. Current methods make some necessary assumptions. First,

links are bidirectional: if node x can receive messages from node y, then y can receive

messages from x. In addition, communication models often adhere to the simple unit

disc graph (UDG) model where all communication ranges are normalised to some

range r. In the UDG neighbours are pairs of nodes separated by a Euclidean distance

≤ r. The UDG model is relaxed later in our discussion. Feasible schemes must, at a

minimum, prove to be loop-free and scalable. We demonstrate some of these subtleties

by starting with a discussion of the naive approaches to position-based routing.

Naive Forwarding Mechanisms

Research into scalable forwarding methods for sensor networks has explored a variety

of forwarding schemes. Scalability is maintained by keeping knowledge only of the
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nodes in communication range, and choosing the next hop based on this knowledge.

All position-based schemes share a common theme: the next hop is determined by

maximising or minimising some criteria associated with local nodes’ positions. We

call this the progress criteria.

Notions of “Progress”. We begin with a formal definition of progress. Say a node

s holds a message to be forwarded to a destination location d (see Figure 2.7), and

has knowledge of all node locations within its communication radius. Then we have

the following definition used to better understand the behaviour of position-based

forwarding schemes.

Definition 2.3.1 The progress of a node x en route from sender s to destination d

is defined as the orthogonal projection of the location of x onto the line sd.

We use Figure 2.7 to better demonstrate various notions of progress as discussed

below. In this figure sensor node s holds a message destined for sensor node d. The

large circle centered at s represents the communication range of s; thus all nodes

inside the circle are neighbours of s. The dotted horizontal line sd is the line onto

which orthogonal projections are made in order to evaluate and compare progress

criteria.

The first forwarding mechanism based on the idea of progress was proposed by

Takagi and Kleinrock [115]. In their Most Forward within Radius scheme, or MFR, the

node with the greatest progress is chosen to be the next hop. Referring to Figure 2.7

we can see that node m projects furthest onto the line that joins s and d. It is

important to note that m provides the greatest amount of progress though it is not

the node closest to the destination. The motivation behind the use of this myopic

routing strategy was to allow for tractable analysis. Recall that progress is defined

as a projection onto a line. Clearly, because we are working with projections on a

line, the dot product of dm · ds will be minimal over all other neighbours of s when
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Figure 2.7: progress

using MFR. This simple notion allowed the authors of [115] to determine an optimal

neighbourhood size for their specific problem.

The converse scheme Nearest Forward Progress, or NFP was later proposed

in [47]. In this work the node with the minimum progress, depicted as node n in

Figure 2.7, is selected as the next hop. This approach may seem counter-intuitive,

but consider that if the broadcast range is variable then this method has the least

probability of collision as well as improved energy savings.

More recently, the direction of nodes was proposed as a criteria for progress

in [63]. The node chosen to be the next hop is the node that is closest to the direction

of the destination. Referring to Figure 2.7 we can see that node c, with angle ∠csd,

is smallest among all of the neighbours of s. Thus, the goal is to minimise the change

in direction from the source to the destination.

The DREAM [7] and LAR [62] projects, simultaneously proposed, use an idea

similar to compass routing. However, these two approaches are best suited in net-

works where nodes are mobile. (Despite their application in mobile environments,

we provide an overview for completeness.) The node that holds a message m with

destination d, calculates an angular range where the message must be forwarded. The

angular range is calculated using i) the circle centered at d with radius equal to the
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maximum movement of d since the last update and ii) the tangents from the current

location to the aforementioned circle. All nodes within this angular range are sent a

copy of the message. Clearly, the success of both methods relies on some knowledge

of the global network, as well as duplication of messages. Such methods fall outside

of the domain of position-based routing.

Each of MFR, NFP, and Compass Routing is myopic. They are localised algo-

rithms that require knowledge only of the immediate neighbourhood. Unfortunately

their global behaviour is such that none of these approaches can claim to be loop-

free. Still, consider that their forwarding decisions attempt to optimise some local

criteria, the effect of which is to approximate the shortest Euclidean path between

the source and destination. The shortest path may be approximated using another

approach that referred to as greedy forwarding. Greedy forwarding is a localised for-

warding scheme whose express goal is to traverse the Euclidean shortest path. It is

this approach on which most research and development, where there is a known and

underlying Euclidean coordinate system, has focused.

Greedy Forwarding. Greedy forwarding was first proposed in [27] as a routing

protocol for wired networks. Referred to as Cartesian routing, the next hop was

chosen to be the neighbour that is closest to the destination. As this work predated

GPS and other localisation services, knowledge of the global topology was required.

The same idea has been re-applied in wireless network settings as the foundation of

an innumerable routing schemes and algorithms. It is known to behave especially

well in dense wireless networks such as those envisioned in many sensor networks.

Greedy forwarding works as follows. Say node s has the neighbourhood N =

n1, ..., nk of size k where each ni is a potential next hop in a traversal which passes

through s. Any message that arrives at s has embedded within it the destination

d. The greedy approach says that the successor to s will be the neighbour ni that

minimises the Euclidean distance to d. In Figure 2.7 we can see that node s will
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select g, the node that most further reduces the distance to the destination among

its neighbours.

It can be shown that greedy forwarding is loop-free (using the simple fact that

every hop reduces the distance to the destination). The delivery rate of greedy for-

warding is known to be quite high in dense networks, but diminishes quickly as the

density falls([25]). The problem is that a greedy path may terminate in a routing

hole, or void, as shown in the next section.

Routing Holes

Greedy forwarding may be loop-free, but delivery is not guaranteed. A consequence

of greedy forwarding is that a route may terminate at local minima, where nodes have

no neighbours that further reduce the distance to the destination [2].

We refer our reader to Figure 2.8 which depicts the types of local minima that

may occur: the smaller dotted circle represents the communication range of node S,

and the larger circle centered at D is used to show that all neighbours of S are further

from D than S, itself. Consider a message destined for node D reaches a minima at

node S. There are two cases to consider. The first, as shown in Figure 2.8a, occurs

where neighbours of S make no progress towards D according to Definition 2.3.1.

This is the obvious case. Less obvious is the case where neighbours of S may actually

make progress towards the destination, yet increase the distance from the current

location. This example is demonstrated in Figure 2.8b where S clearly lies within

the circle centered at D, while the neighbours of S, x and A, lie outside of the same

circle.

These local minima are commonly referred to as voids, holes, or stuck regions.

Their occurrence largely determines the performance of greedy forwarding, whose

performance varies with network density and distribution. (In 3-dimensional en-

vironments their impact may be less sever [1].) A robust sensor network routing
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Figure 2.8: Neighbours of stuck nodes may or may not make progress.

protocol must perform well despite the occurrence of local minima. We proceed in

our discussion with proposed solutions to the routing hole problem.

Algorithms for Recovery from Routing Holes

Greedy forwarding is known to perform well in sufficiently dense networks ( [55]) yet

there are no delivery guarantees. Many sensor network applications are loss-sensitive

and have little to no tolerance for undelivered information. Thus greedy forwarding

schemes aiming to guarantee delivery demand that routing voids be circumvented or

avoided. Work in [25] presents evidence that the frequency and impact of routing

holes is manageable. Current solutions to this problem are generally categorised as

either broadcasting, planar subgraph methods, or hole mappings, discussed below.

Broadcasting, BFS, and DFS Approaches The naive solution to the routing

hole problem is simply to broadcast some number of hops from the stuck node until a

node is found that is closer to the destination. Two of the first solutions which aimed

to be more efficient were the Geographic Routing Algorithm (GRA) in [100] and the
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Optimal Transmission Ranges (OTR) approach in [113].

The authors of GRA implement greedy forwarding as the primary means of

transport. If, however, a message reaches a stuck region GRA launches a route

discovery packet from the stuck node. The route discovery itself takes the form of

a breadth-first search amounting to a limited broadcast, or a depth-first search that

eventually produces a single acyclic path. Each node visited during the recovery phase

appends its own location to the recovery packet, and all discovered paths are stored

in routing tables. In networks of size n routing tables are found to have a mean size

of O(L log n) where L is the average path length between two nodes. In addition, the

authors provide some mechanisms for dealing with location inaccuracy, node failure,

and node mobility.

The goal of OTR differs in that it creates Quality of Service (QoS) paths through

the network. The necessary characteristics are collected and disseminated during path

traversals, which occur from s to d via the depth-first search method. Routing tables

are not used, but instead each node stores the next and previous hop for each packet

until the status of that packet can be confirmed. Such methods face scalability issues

as traffic volume grows, and are additionally challenged where acknowledgements are

not returned.

Hole Recognition and Mappings A second approach to the recovery phase is

to recognise and map the hole boundaries in advance. This is the subject of work

in [23, 26, 31]. Described in detail in Chapter 2.2.1 is the boundhole algorithm in [23].

As an alternative the boundhole algorithm may terminate upon reaching some node

u such that |ud| < |xd|. If boundhole is to terminate early then every recovery packet

must have encoded within it the subpath p ∈ P traversed from x. We call p the escape

path. Clearly, the number of hops in |p| < |P |, otherwise x could not be a stuck node.

Experiments in [25] reveal that the escape path p is significantly smaller than the path

P that bounds the void region; perhaps enough to warrant early termination when a
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stuck region is encountered instead of a complete mapping.

Hole recognition, in general, has thus far received little attention in the research

community. Additional algorithms are proposed in [26] and in [31]. The former uses a

statistical approach to recognise holes in very dense, uniformly distributed networks.

The latter study is the first where the hole recognition algorithm does not rely on

location information. Neither provides methods for circumventing the stuck regions,

yet it is important to recognise that hole-recognition is an important problem in

and of itself. More recent work in [84] tries to predict rather than recognise holes,

while [34, 44, 103] investigate methods that identify holes using passive listening

methods.

Planar Subgraph Methods The recovery mechanisms so far described all rely

on resources that may be taxing on sensing devices given energy and scheduling

constraints. DFS, BFS, and mapping methods, for example, require storage either

in-device, in-packet, or both. Also, their communication in the worst case, amounts

to a limited broadcast. Such communication requires little to no additional memory,

but demands additional energy consuming transmissions. Drawbacks such as these

often render broadcast-like protocols unsuitable for point-to-point services in sensor

networks. To solve this challenge many projects have investigated the restriction

of routing to subgraphs of the original network graph. This class of algorithm is

exemplified by one very desirable feature: Such algorithms are stateless, ie. a node

requires no knowledge of the network outside of its own neighbourhood, yet is able

to guarantee delivery. This class all share a simple characteristic: they rely on the

construction of the network’s planar subgraph. For our purposes a planar subgraph

is one which contains all the vertices of G, but where edge intersections occur only at

a vertex. (Rather, no edges overlap.)

The most prominent and best known recovery algorithms route around the rout-

ing hole face (or perimeter) in the planar subgraph. This method is equivalently
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(a) Gabriel Graph Construction (b) Relative Neighbourhood

Graph Construction

Figure 2.9: Localised constructions of planar subgraph.

known as face routing ([9, 10]) and perimeter routing ([55]). Face routing was first

proposed by Bose et al. in [9] with some theoretical bounds. Karp et al. indepen-

dently proposed an identical mechanism in [55] but with work on a MAC-compatible

implementation. Variants have since emerged addressing, for example, theoretical

bounds in [67, 66, 69]. In [52], face-routing is augmented into a “select-and-protest”

reactive protocol in order to reduce the information required to planarize the graph.

The inspiration behind these methods comes from the application of a simple

rule known to guarantee escape from a maze. In a maze, by keeping one hand against

the wall at all times one is guaranteed to find an exit, or return to the point of origin

if no exit exists. This is referred to as the left- or right-hand rule. This works because

of a salient feature of maze construction: if we represent the walls of the maze as

edges in a graph, and the intersection of those walls as vertices, then the resulting

graph is planar, where no edges intersect.

Wireless network graphs may consist of intersecting edges so it is necessary for

planar subgraph method to prune edges from the network graph so that it is planar

and so that it remains connected. Gabriel Graphs (GG) and Relative Neighbourhood

Graphs (RNG) are planar graphs whose constructions are localised, a characteristic

particularly suitable to sensor environments. Intersecting edges are eliminated by
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connecting pairs of nodes through witness nodes, if such a node exists in a common

region.

We refer the reader to Figure 2.9 for examples of each construction where large

circles centered at nodes u and v represent the communication ranges of nodes u and

v, respectively. The GG construction is depicted in Figure 2.9a. For any pair of

neighbours u, v, if a witness node w exists within the circle whose diameter is |uv|
(shown as the shaded region in Figure 2.9a), then uv is removed from the graph.

Similarly for the RNG in Figure 2.9b, if w appears within the intersection of the two

circles centered at u and v with radii equal to |uv| (again shown as the shaded region),

then uv is removed from the graph. In each, pruning is valid since communication

may continue through w. In [9, 10] and later in [55], it was shown that if the unit

disc graph is connected then the intersections with Gabriel graph UDG ∩ GG, and

Relative Neighbourhood graph UDG ∩RNG, remains connected.

Face- and perimeter-routing techniques choose to route greedily whenever pos-

sible. The recovery phase is initiated only when a message gets stuck at some node.

Upon receipt of message m destined for node t, node s inspects the message to reveal

it either in greedy or recovery mode. The corresponding algorithms, executed at each

node, are listed in Algorithms 2.1 and 2.2.

Algorithm 2.1 Greedy Mode

1: let s be the current node

2: let w be the neighbour closest to t

3: if (w, t) < (s, t) then

4: forward m to w

5: else {no such w exists; m is stuck at s}
6: mark packet as recovery with location of s

7: forward to neighbour that is left of
−→
s, t

8: end if
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Algorithm 2.2 Face/Recovery Mode

1: let u be the node from which m was received

2: let v be the current node

3: let w be the neighbour closest to t

4: if (w, t) < (s, t) then

5: mark packet as greedy

6: forward to w

7: else

8: forward to neighbour that is left of −→v, u

9: end if

Algorithms 2.1 and 2.2 assume a stuck node has first constructed the portion of

the planar sub-graph that occurs within its view, as above. If in greedy mode a packet

is forwarded according to Algorithm 2.1, where a sensor forwards to the neighbour

closest to the destination. If no such neighbour exists then the sensor node forwards

according to Algorithm 2.2. Once stuck, the message m is marked recovery and is

forwarded to the neighbour that appears first in a counter-clockwise direction. While

in recovery mode each sensor that receives the message first checks for a neighbour

closer to the destination than the point at which the message was marked recovery.

Returning to Figure 2.8a, we can see s is a stuck node. In the case of left-hand rule,

sx is left of sd. The recovery path sxy terminates upon finding z since z is closer to

d than s, where recovery began.

One special case occurs where an edge uv intersects sd during recovery. The

solution is left as an exercise.

It has since been shown that ‘Hello’ messages may hinder network performance [43].

This is addressed in face-routing directly by [14] and more generally in [34, 44, 103].

Further work in [124] reduces the path length during the recovery phase.

These algorithms are especially suited to sensor networking environments: they
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guarantee delivery, are localised in their operation, and are stateless in the sense that

they require no information outside of the location of their neighbours. However, we

see in the next section that planar subgraph methods are not without their drawbacks.

Drawbacks and Challenges of Planar Methods

Planar subgraph methods, while promising, face three major challenges before their

deployment may be considered feasible. First, planarization assumes locations are

accurate, an assumption that may be untrue. Second, the localised nature of the

planarization process means that one sensor node may be blind to environmental

obstacles that are visible to neighbouring sensors. Finally, the unit disc model on

which these algorithms are constructed is a poor representation of the real world. We

use this section to touch on each of these challenges.

Routing protocols that operate over pre-established coordinate systems are gen-

erally designed under the assumption that location information is accurate. This

assumption is challenged by real-world limitations. GPS, for example, offers high res-

olution localisation, but is subject to line-of-sight constraints rendering it ill-suited to

underground, underwater, and under-coverage applications, but to name a few. Fur-

thermore, the added expense incurred by supporting GPS in all nodes is restrictive.

Many proposals exist to resolve this issue by supporting some small location-aware

infrastructure, [45, 48, 79, 94] but to name a few, from which all other nodes may

learn their locations; yet even these fall prey to poor resolution and estimation errors.

There are cases where localisation and estimation errors have little adverse effect.

For example, in [41] greedy routing was evaluated in simulated networks with local-

isation errors. The results show that the performance of greedy routing is largely

unaffected by inaccuracies up to 40% of the radio range. Conversely, there are

contexts in which localisation errors can be destructive to correct protocol opera-

tion [56, 108, 109]. One such example is demonstrated in [57] which models and eval-
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uates location error on face-routing techniques; here we find that errors of as little

as 20% of the communication range caused high packet drop rates, non-optimal path

selection, and looping. These experiments were reinforced in [107] which investigates

the types of location errors that lead to performance degradation in face-routing. In

doing so the authors were able to suggest a simple check, consisting of mutual agree-

ment between nodes, to resolve many of the problem cases. It may also be possible

to reduce the impact of error using optimization techniques [70].

d

v

w

u

Figure 2.10: Planar methods may fail without inter-neighbour link information.

In addition to position errors, a second challenge faced by planarization processes

lies in its best feature, that all operations are local and occur without need for negoti-

ation with neighbouring nodes. The level of localisation inherent in the planarization

process leaves open the possibility for incorrect output. Specifically, because a node

planarizes its neighbourhood using only the locations of its 1-hop neighbours, a node

may assume links exist where they do not. Consider the example in Figure 2.10 where

a packet destined for node d gets stuck at node u. The planarization of the neighbour-

hood of u removes the link uv believing v is reachable via w. Since u is unaware of

any obstacles or interference between w and v, u’s planarization of its neighbourhood

is incorrect. This phenomenon was first demonstrated in [54] and [86].

Finally, we must address the likelihood that the unit disc graph correctly repre-
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sents wireless network graphs. The quasi-unit disc graph has been proposed in [89, 65,

68]. Experimental evidence in [121, 125] suggests that radio ranges are inconsistent

and irregular. Experiments in [60] conducted on two sensor networks further demon-

strate and enumerate the difficulties that occur because the unit disc assumption is

violated. The experimental evidence is used to design a protocol that corrects the

failings of the Gabriel and Relative Neighbourhood Graph constructions. Protocols

that avoid the unit disc assumption are discussed in the next section.

Guaranteed Delivery in the Real World

Face-routing algorithms are attractive because they are localised and efficient. Yet

as previously discussed, they are known to be ill-suited to physical environments.

There are two reasons for this. First, the Gabriel and Relative Neighbourhood Graph

constructions rely on the assumption that all communication range in the network

is identical and uniform (the attributes associated with the UDG model). Moreover,

these distributed constructions are unable to resolve links broken by obstacles or

interference. Recent breakthroughs have begun to surmount the impracticalities of

face-routing while maintaining delivery guarantees [59, 74].

The first known protocol to guarantee delivery over a global coordinate system

without planarization or the use of left-hand rule is the Greedy Distributed Spanning

Tree Protocol (GDSTR) algorithm in [74]. GDSTR builds on the fact that any

message can be successfully delivered via depth-first search if the network is connected

via a spanning tree. (This fact alone does not solve the problem: delivery would be

inefficient, needing up to 2n − 3 hops.) The authors in [74] describe a new type

of spanning tree, the hull tree, to route more efficiently. A hull tree is a spanning

tree with one added piece of information: each node records the convex hull that

contains all of its descendants in the tree. (The convex hull of a set of points is the

smallest polygon that contains all the points.) In GDSTR forwarding occurs greedily,
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as with most position-based protocols. If a message reaches a void, a recovery mode

is initiated where convex hulls are used to determine the regions of the network that

contain unreachable destination. This information is used by GDSTR to route along

the spanning tree to forward to the appropriate convex hull. If a node is found en

route that is closer to the destination than the node where the message was stuck,

then GDSTR returns to greedy forwarding. GDSTR is known to scale well as the

neighbourhood size grows. Furthermore, the use of multiple hull trees adds fault-

tolerance to the network and if multiple trees are rooted at opposite ends of the

network, routing efficiency improves.

b

dc

a

Figure 2.11: CLDP probes links using left-hand rule.

The Cross-Link Detection Protocol (CLDP) proposed in [59], and later improved

in [39], circumvents voids by face-routing. It uses left-hand rule over a planar sub-

graph of the network; its design however, is motivated by the observation that routing

difficulties in planar subgraph methods arise, in part, due to the constructions them-

selves. (Recall from previous that successful local planar subgraph constructions rely

on the unit disc graph.) For this reason, CLDP proposes an alternate construction of

planar subgraphs that assumes only that links are bidirectional. CLDP operates in

a distributed fashion, exchanging some localised operation for accurate information.

The idea behind CLDP is that each node is able to probe the vicinity for intersecting

links. A probe packet is initialised with the endpoints of the first link to be probed.

Figure 2.11 shows the simplest example of a probe traversing a graph using left-hand
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rule. Say a probe starts at node d for link (d, a). Sensor node a then forwards to b as

determined by left-hand rule. When the probe reaches node b, the intersection (b, c)

is recorded, before the probe packet continues its traversal. (Recall that a traversal

according to left-hand rule will eventually return to its starting point.) Prompted by

the return of the probe packet, d proceeds to prune links. Figure 2.11 depicts only

the naive case; the graph remains connected following a removal of either of the two

intersecting edges. We leave as an exercise the identification of remaining cases and

the care that must taken when pruning links to keep the graph connected. Further-

more, to avoid the slow process of scheduling serial probing by neighbouring nodes,

a system for concurrent probing is proposed. Concurrent probing is achieved by im-

plementing a mechanism to ‘lock’ links so that no more than one link is removed at a

time from any vicinity. CLDP is one of very few protocols to have been implemented

on testbeds [59]. The associated communication complexities and storage costs re-

vealed in this process (see [60]) are motivation to develop alternative approaches to

guarantee delivery.

Protocols such as CLDP and GDSTR, in order to be feasible for physical net-

works, sacrifice efficiency for accuracy. CLDP requires negotiation within each neigh-

bourhood in order to prune appropriate links, and GDSTR must broadcast informa-

tion to construct and maintain its hull trees. It remains an open question whether

such trade-offs are a necessity.

2.3.2 Routing with Unknown Positions

By nature of its name position-based routing protocols may be thought to assume that

position location is available for use by the routing protocol. Often this information is

not and cannot easily be made available from the outset: For example, the inclusion

of GPS in the manufacturing process is cost prohibitive, and despite this, sensor nodes

may be deployed in adverse environments where GPS information cannot penetrate.
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This begs the question, can position-based routing be applied to contexts where

location information is not available to but a few nodes? This question is furthered

by the notion that many proposed applications do not require any knowledge of

geography, but do require advanced point-to-point routing services.

Applications such as data querying [36, 40, 81], reactive-tasking where events

are triggered by local events, and data-centric storage [102, 111], all demand robust

routing yet ignore physical location. Network applications such as these will identify

a node by its identifier or by the data it stores, each of provides no means by which

to route using position. In such contexts a network may implement position-based

routing by use of a distributed hash table (DHT), which partitions keys/identifiers

from the owner of the key ([6]). In a DHT sensor network, position-based routing is

an appealing means to bridge this partition.

In this section we explore the potential for position-based routing where loca-

tion information is generally unavailable. The solution that has received the widest

attention is to develop protocols which construct their own maps and create their

own coordinate systems. Such protocols are often said to construct and rely upon

virtual coordinate systems. The routing in virtual coordinate systems is often cou-

pled with the construction of the coordinate system, a coupling which necessitates an

understanding of the coordinate construction itself.

Among the first feasible algorithms to construct a virtual coordinate system for

the purpose of routing in wireless systems appears in [110]. This method requires no

infrastructure. However, its centralised nature and expensive cost (O(n3)) render it

poorly suited for sensor networks.

The establishment of a coordinate system in a distributed fashion, in order to

route messages between nodes, is non-trivial. We introduce two methods under in-

vestigation. The first is the distance-based approach where the aim is to create some

semblance of a Cartesian space (without which direction between nodes is unclear).

The alternative is a hop-based protocol which addresses using the distance between
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nodes, in hops. Each of these share drawbacks, a discussion we reserve until later.

Distance Based Coordinates and Routing

Among the earliest protocols promoting both a virtual coordinate system construct

with a corresponding routing mechanism are the GEM [93] and Medial Axis [11]

infrastructures. In GEM a labelled graph is constructed and embedded into the

network topology in a distributed fashion, where the label encodes a node’s position

within the graph. The idea is demonstrated by coupled coordinate setup and routing

protocols called VPCS (Virtual Polar Coordinate Space) and VPCR (Virtual Polar

Coordinate Routing), respectively. Using VCPS, the GEM system is able to embed

a ringed tree into the network in order to create a polar coordinate system. The

VCPR algorithm designed to route over the polar coordinates is the first to guarantee

delivery in a point-to-point fashion with no a priori geographic information. While

the initialisation scales well, the recovery process initiated on node failure or link

degradation is expensive. Recovery may force a large number of nodes to participate

in a re-computation process. Similar work appears in [76].

To better demonstrate the ideas behind distance-based constructions, we focus

our discussion on the NoGeo method proposed in [101]. In it the authors provide a

mechanism to construct a virtual Cartesian space, and implement the simplest form of

greedy routing. Their work is a derivation from previous work intended to test graph

connectivity [83], and assumes that nodes may accurately measure the distances to

their immediate neighbours.

Virtual Coordinate Construction For clarity, explanation of the NoGeo algo-

rithm is presented in a cumulative fashion where at each additional step we remove

some knowledge from the system. Hence we begin by describing the coordinate con-

struction under the assumption that nodes on the network boundary, or perimeter,

are aware of their position relative to the network as well as their exact location. The
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Figure 2.12: The (a) real and (b) virtual coordinates of a 3200 node network.
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Figure 2.13: Intermittent virtual coordinates of 3200 nodes in a 200x200 space where

nodes are known in advance to lie on the network’s perimeter.
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algorithm in [101] is based on an iterative relaxation procedure from [83] which is

used to determine the locations of all remaining nodes in the network. The procedure

is such that each link is represented by a force that pulls its adjoining neighbours

together. The force in each of the x, y directions is proportional to the difference

in the x, y coordinates. At any iteration a node’s neighbours are held with fixed

position; its equilibrium position, where the sum of the forces acting on it is zero,

is the average of all its neighbours’ x−coordinates in the x−direction, and similarly

for the y−direction. This relationship motivates the iterative procedure repeated

periodically at each node i using the relaxation equations

xi =

∑
k∈neighbour set xk

size of(neighbour set(i))
(2.3.1)

yi =

∑
k∈neighbour set yk

size of(neighbour set(i))
. (2.3.2)

in each of the x and y directions, respectively.

As an example, consider the wireless sensor network in Figure 2.12a. This net-

work consists of 3200 nodes within a 200x200 unit space where each node has a

communication range of 8 units. As the iterative procedure described above is exe-

cuted over this network, sensor coordinates will gradually shift to match their true

coordinates within the network. This ‘shaping’ is depicted following 10, 100, and 1000

iterations in Figures 2.13a- 2.13c, respectively. In this example he initial coordinates

of each node have been set to the center of the network at (100,100). (We later return

to compare the virtual and actual topologies.)

This coordinate construction may be prefaced with additional steps if there is no

advance knowledge of perimeter nodes, provided there are two beacons somewhere

in the network. (Beacons are distinguished from the remaining network because

they either hold and disseminate information, or play some specific coordination role

required for successful setup and communications.) Either beacon may be used to
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Algorithm 2.3 Coordinate determination among perimeter nodes in NoGeo.

1. Each perimeter node broadcasts a HELLO message so that each may calculate its

distance to every other perimeter node. The result is stored in a perimeter vector.

2. Each perimeter node broadcasts its perimeter vector to the network so that each

perimeter node knows the distance between every pair of perimeter nodes in the

network.

3. Each perimeter node triangulates to find the coordinates of every perimeter node in

the network. Coordinates are chosen so as to minimise

∑

i,j∈perimeter

(measured dist(i, j)− euclid dist(i, j))2, (2.3.3)

where measured dist(i, j) represents the distance between nodes i, j as measured in 1,

and dist(i, j) is the Euclidean distance between the virtual coordinates of i and j.

identify nodes on the perimeter, after which point the perimeter nodes exchange

messages to determine their locations.

The first step in accomplishing this task is to identify nodes on the perimeter.

Recall the assumption that two beacon nodes exist. Either beacon is designated as

the primary beacon, that broadcasts a HELLO message. Each node uses receipt

of the HELLO message to determine its location from the beacon, according to the

perimeter node criterion. The Perimeter Node Criterion says that if a node is farthest

away from from the bootstrap beacon among all nodes in its two-hop neighbourhood,

then this node decides it lays on the perimeter of the network. This is by no means an

exact determination but simulations show it identifies a sufficient number of perimeter

nodes. Once nodes have identified their perimeter status they must coordinate to

exchange information and calculate their coordinates according to Algorithm 2.3.

Each perimeter node, following Step 3 in Algorithm 2.3, has established its own

virtual coordinate. One challenge remains. Each perimeter node has established its
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own virtual coordinate yet the network lacks a global orientation. The reason is

that any set of coordinates satisfying Equation 2.3.3 may be rotated, translated, or

transposed. The result is that perimeter nodes cannot be guaranteed to share the

same sense of direction.

The solution is the reason two beacons must exist. The two beacons share their

perimeter vectors and participate in the triangulation process. During this process

each of the perimeter nodes calculates the center of gravity of the network. The

combination of the two beacons with the center of gravity provide a set of axes on

which all nodes can agree: the center of gravity becomes the origin, while each of the

two beacons define the positive x, y axes.

An example topology at equilibrium, following the execution of perimeter identi-

fication, coordinate determination and dissemination, appears in Figure 2.12b. This

is the virtual network space that corresponds to the actual network in Figure 2.12a.

Using this scheme the virtual coordinates maintain a similar structure to the actual

coordinates, but with some caveats. For example, the network appears to have been

rotated about the virtual center of gravity. However, the rotation is uniform and

consistent, meaning that the rotation is network-wide. Note that holes in the virtual

networks constructed in Figures 2.12b and 2.13c are much larger in size than in the

actual network of Figure 2.12a. As discussed below, this salient feature does not

reflect itself in the routing mechanism.

Routing in the virtual Cartesian coordinate system takes the form of pure greedy

routing as described in Chapter 2.3.1: Messages are forwarded to the neighbour

that most reduces the distance to destination until no such neighbour exists or the

destination is found. Despite the inaccuracies of location determination and the

increase in hole sizes (as reflected in physical space), greedy routing over virtual

coordinate systems performs better than it does over physical coordinate systems.

The rate of successful delivery rate is higher when routing over virtual coordinate

systems.
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The underlying reason for an increase in the rate of delivery is that locations

are assigned coordinates relative to the locations of other nodes in the network, not

relative to the space that the network occupies. Hence, a virtual coordinate system

accurately reflects not network geography, but rather network connectivity. This

relationship, when reflected in actual space, is responsible for the apparent growth in

hole sizes. (Despite this fact physical coverage area is unaffected; a necessary property

of sensor networks). It is also responsible for the improvement in the performance of

greedy routing as it reflects network paths and connections more than node location

in the physical space.

One drawback to approaches in this class of position-based routing is the expense

incurred by the computation and transmission necessary to establish a reasonable co-

ordinate system. Consider in NoGeo, for example, that it is somewhat impractical

that initialisation requires O(
√

n) nodes to flood the network, and for at least this

number of nodes to store O(n) state (since the distance vectors occupy O(
√

n×√n)

space). The state requirement has since been reduced in [75] by implementing al-

gorithms that elect a constant number of beacons, as well as establishing coordi-

nates using a repulsion, rather than an attraction, mechanism. Still, many rounds

of network-wide communications are necessary. We proceed with an approach that

reduces on this expense in exchange for a loss in topological accuracy.

Hop-Based Coordinates and Routing

One alternative approach to constructing virtual coordinates forgoes Euclidean ap-

proximations, altogether. Instead designated coordinates are comprised of a vec-

tor that contains a set of hop-distances to beacons located around the sensor net-

work [5, 12, 18, 28, 118, 126]. As is the case with NoGeo, the goal of these methods

is to deliver packets in an environment with no a priori knowledge of node locations,

in a point-to-point manner. We demonstrate this approach to position-based routing
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using Beacon Vector Routing (BVR) in [28] and reserve discussion for the differences

with other projects until later.

BVR is a protocol that assigns routing coordinates and defines a distance function

used in forwarding decisions. A node’s coordinate is a tuple recording the hop distance

to each of a subset of available beacons, information which is disseminated using

reverse path tree constructions. (A reverse path tree construction occurs when a

beacon broadcasts its existence to the network and all remaining nodes record the

shortest hop distance to that beacon.) A distance function is used to route greedily.

In the event that greedy routing fails, a correction mechanism exists to guarantee

delivery.

If we let r denote the total number of beacons, and qi denote the distance in

hops from a node to beacon i. The position of node q is the tuple (q1, q2, . . . , qr).

By this definition it is possible for multiple nodes to share the same coordinate so a

node identifier is necessary to disambiguate between nodes with identical coordinates.

The distance function must favour greedy forwarding to maintain a high level of

efficiency. When evaluating the distance function the BVR metric aims to minimize

the difference in coordinates component-wise. This metric is based on the idea that

it is better to move towards a beacon close to the destination than it is to move away.

Hence, the distance function δ is designed to move a message towards a beacon if

the destination is closer to the beacon than the current node, ie. it also moves a

message away from a beacon if the destination is further away. (Note that using this

intuition, movement towards a beacon always reduces the distance to the destination

but moving away is not: The destination may sit on the other side of the beacon from

the current node.)

Let the distance function δ(p, d) measure the goodness of node p as a next hop

to d. The above intuition is encapsulated into the distance function using the sums,

δ+
k (p, d) =

∑

i∈Ck(d)

max(pi − di, 0) (2.3.4)
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Algorithm 2.4 Overview of Beacon Vector Routing (BVR)

1. (Greedy.) Where possible, forward to the neighbour which minimises Equation 2.3.4,

breaking ties using Equation 2.3.5.

2. (Recovery.) If no such neighbour exists, record the current distance in the packet as

δmin and forward to the beacon closest to the destination.

3. (Recovery.) If message has reached a beacon without reverting back to greedy mode,

broadcast with a time-to-live equal to hop distance from the destination node.

δ−k (p, d) =
∑

i∈Ck(d)

max(di − pi, 0). (2.3.5)

where Ck(d) is the set of k beacons closest to d. The metric is a sum of differences

derived from Equations 2.3.4 and 2.3.5. δ+
k is the sum of the differences of beacons

closer to the destination than the node p, while δ−k is the sum of the differences of

beacons further away.

BVR routes greedily as follows. The next hop is chosen to be the node that

minimises δ+
k ; any tie that may occur is broken by minimising δ−k . Note that the

k beacons may number fewer than the total number of beacons in the system, and

that the smallest difference δmin encountered during a traversal must be stored in the

message header for reference.

A global view of the main BVR algorithm is summarised in Algorithm 2.4. As

is the case with other greedy schemes, there are occasions where forwarding may

terminate prematurely, failing to find a neighbour that improves on δmin. BVR is

able to guarantee delivery using a two-tier recovery mode. First, if a node has no

neighbour closer to the destination than itself, it will forward the message to the

beacon closest to the destination. The idea is that if a sensor node is unable to find

the destination then it should send the message in the direction of a node that can.

Interim nodes that receives the message will forward to the destination as if recovery
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never occurred, if possible. Second, if a beacon is unable to further minimize δmin

then it initiates a scope flooding to find the destination. (The scope of the flood is

known since the destination coordinates record the hop-distance from each beacon.)

While this recovery mechanism is an expensive means of guaranteeing delivery, it is

found to occur infrequently in simulations.

Similar ideas have been proposed in [12, 18]. FT-BVR in [18], for example, ex-

tends BVR using fault-tolerant techniques to improve on a variety of performance

metrics. Logical Coordinate Routing (LCR), in [12], is similar to BVR in its coor-

dinate construction and routing mechanisms. Where it differs is in recovery. Where

BVR ultimately resorts to a scoped broadcast, LCR backtracks along the path-thus-

far until an alternate path is found or the message returns to the originating node

where delivery is deemed to have failed. Clearly, LCR avoids the expense of a broad-

cast in exchange for additional state (either in the message or stored at interim nodes).

More recent work has emphasized a hybrid approach to virtual coordinate con-

structions. The goal of the S4 [88] project is to reduce both state and path stretch in

virtual coordinate systems. S4 consists of a hierarchical system with physical coordi-

nates at the lower level and virtual coordinates at the higher level. At the higher level,

packets are directed towards clusterheads near the destination. If within the same

cluster, nodes will route to the destination using the shortest path as determined by

physical coordinates. The axis-coordinate routing protocol [117] operates similarly.

Packets are routed using hierarchical 5-tuple coordinates developed along latitudinal

and longitudinal axes. Both S4 and axis coordinates require an multi-round prepro-

cessing step that is network-wide.

Drawbacks and Challenges with Unknown Coordinates

Generally speaking, mechanisms that construct and route over virtual coordinate

systems manage to overcome many of the challenges that face routing in physical
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coordinate systems. To wit, virtual coordinate routing schemes make no assumptions

pertaining to the unit disc graph, an assumption which is shown to be violated in

practice [17, 121, 125], nor do they require GPS-like services that may be unavailable.

This benefit does come at some expense, however.

The first limitation is related to the infrastructure necessary for correct operation.

Constructs that create coordinate systems which reflect connectivity require the use

of beacons. (Beacons are defined as nodes that have knowledge of their location

via either global positioning systems, that have some pre-programming, or that are

placed strategically). Each of these incurs a cost increase on the manufacturing

and deployment process that is intended to otherwise be cheap. In addition, many

environments well-served by sensor-network applications can be volatile. In such

environments a small number of beacons may be lost, destroyed, or otherwise disabled.

The use of beacons may be restrictively expensive and complicated when deployed

broadly, yet present fault-tolerance and failure issues when deployed narrowly. If

beacons are required, does it suffice to select them randomly? If not, what determines

the goodness of a beacon? Despite these challenges, beaconing may be an effective

solution to a difficult problem.

In addition, virtual coordinate and routing methods also incur additional com-

plexity in communication, and sometimes computation. Coordinates in the network

cannot be learned unless information is broadcast so that all nodes share similar

knowledge. Energy consumption is a greater concern since transmission is known to

be a high-energy operation, and broadcasts increase the chance of collision (though

there are proposals to intelligently broadcast such as in [42]). Often the determination

of coordinates requires additional computation. Work to appear in [85] may reduce

this complexity.

Finally, we address the accuracy of virtual coordinates. Coordinates that record

hop counts are likely to be duplicated throughout the network, and so additional care

must be taken to deliver messages to the intended recipient. Coordinate systems that
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measure physical distances reflect network connectivity well, but are subject to limits

in resolution. Work on Nagpal’s algorithm in [91], a set of algorithms to construct

and improve coordinates based on distances from three distinct beacons, reveals the

smallest resolution to be π
4n

r, where n is the average neighbourhood size and r is the

radius. If achievable, this limit may or may not be acceptable in practice.

2.3.3 Recent Improvements

Many recent efforts investigate the merits of hybrid routing approaches, implementing

position-based routing over a hierarchical environment. The face-tracing project [123],

for example, embeds the network graph into a higher dimension topological space. Us-

ing probe packets that identify faces, each node orders its incident links in a such a way

that permits successful face-routing in this higher-dimensional space. Optimisations

include clustering and link omissions, where appropriate. The face-tracing protocol

makes no unit-disc assumption despite operating on physical coordinates. However,

the cluster establishment and probing phases result in expensive preprocessing and

maintenance requirements. An alternative to hole recovery is hole avoidance, as sug-

gested by [49]; here the authors have shown that the network may discover ‘unsafe’

regions where routes can be re-directed to avoid the hole region entirely.

The authors in [33] improve upon the hierarchical ‘landmark’ approach in [24].

It remains an open problem how to select appropriate landmarks. Still, despite the

unit-disc assumption their work allows for uncertainty in node locations. An addi-

tional embedding appears in [61], where each node in the network graph is assigned

a coordinate in hyberbolic space. The authors show that greedy routing will always

find a route to the destination in this space. The cost of network-wide construction

and look-ups, however, may render this approach prohibitively expensive. Additional

hybrids appear in [13, 29, 38, 82] and [90].

A number of studies have focused on augmenting a single performance metric
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MFR, GRA, Planar

NFP, Greedy DFS-QoS Mapping Subgraph CLDP GDSTR NoGeo BVR

Compass Methods

UDG Assumption No Yes No Yes Yes No No No No

Loop-free No Yes n/a n/a Yes† n/a Yes† Yes Yes

Critical Nodes No No No No No No Yes Yes No

Beacon Requirements No No No No No No No Yes Yes

Multiple Routes No No No Yes∗ No n/a Yes∗ No No

Startup Coordination Local Local Local Extended Local Extended Global Global Global

Void Recovery Cost n/a n/a Medium Medium Low High Medium n/a Medium

Guaranteed Delivery No No Yes Yes Yes n/a Yes No Yes

Obstacle-resilient Yes Yes Yes Yes No Yes No Yes Yes

Coords Reflect Connectivity No No No No No No No Yes Yes

† - A loop only occurs when a packet returns to its origin, indicating the destination is unreachable.

∗ - The choice of route occurs only when recovering from a void region.

Table 2.1: Summary of various protocol attributes.

in existing schemes. In [87], for example, nodes exploit the fact that nodes listen to

transmissions even if the transmissions are intended for other parties. In doing so a

node is able to prune the path taken during the recovery phase in face-routing.

In addition, face-routing algorithms suffer from high congestion along the re-

covery paths, reducing the throughput and lifetime of the network. Load-balancing

provides one solution though current projects are known to converge too slowly. A re-

cent study suggests that an element of randomisation can provably reduce congestion,

and so increase throughput [114].

There are also projects that augment position-based routing using outside re-

sources. For example, routing in [127] exploits knowledge of city maps, while [35]

adds explicit mac-layer support for geo-routing. Further efforts have proposed tai-

loring geo-routing to deliver video signals [16] or optimise metrics other than path

length [73]

2.4 Summary

In this chapter we have explored algorithms and mechanisms for boundary detection

and position-based routing in sensor networks, whose communication graphs are large
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and dense relative to traditional wireless ad-hoc networks. Position-based routing

occurs where forwarding decisions are based on a metric that reflects the position of

nodes in reference to the physical space, or to reference nodes. A selection of key

attributes for a selection of protocols appears in Table 2.1.

We proceed in the next chapter with the local convex view, a method designed

to identify nodes along the network edges.



Chapter 3

Localised Convex Hulls for

Boundary Detection

In this chapter we introduce the local convex view (lcv) as a heuristic approach to

identify nodes close to the network edge. The local convex view is defined as the

convex hull of the nodes within range. (Thus, as many local convex views exist as

nodes in the network.) In the simplest terms a node decides it is close to the network

boundary by asking the following question: Am I in my own local convex view? It

is inspired by the knowledge that the convex hull of a set of points consists of the

outermost points in the set. Furthermore, much like statistical methods as described

in Chapter 2, it is motivated by the hypothesis that within view of many nodes there

exists structural information relevant to the network.

For those contexts where position information is unavailable lcv assigns local co-

ordinates using its 1-hop distance measurements and the 1-hop measurements of its

neighbours. Each node constructs a Cartesian space by placing itself at the origin and

its furthest neighbour along the horizontal axis. All remaining nodes in the neigh-

bourhood are assigned coordinates relative to established coordinates. The success of

this triangulation approach relies on the assumption that a node’s neighbourhood is

45
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2-connected, ie. removing the node in question leaves no disconnected components.

Where this assumption fails, we show the maximum number of possible disconnected

components is 5. Furthermore, when a neighbourhood is not so connected, we suggest

a simple probabilistic model to determine boundary status according to the criteria

set in lcv.

In our evaluation we simulate networks of varying size and topology. Topologies

vary by generating networks where node locations are selected from uniform, normal,

and skewed (Pareto) distributions. In our investigation we have identified two met-

rics for comparison. The edge proximity measures the likelihood of boundary-node

declarations that occur relative to the network edge. The regional proportionality

measures the proportion of boundary- versus regular-nodes relative to the network

edge.

We first compare lcv against the 2-hop method from [101] and an adaptation of

the tent-rule in [23], whose localised operations and limited messenging complexity

make them suitable for comparison. Results indicate that the tent-rule is unsuitable

for network edge detection. The underlying cause is in its design which is to identify

nodes that abut any unreachable region, including those that are ‘inside’ the network.

The 2-hop method, which gathers some global information, generally returns the

seemingly most accurate results. While perhaps unsurprising, this observation is

misleading. Further investigation shows that the 2-hop method may reveal clusters

of boundary nodes as the network grows dense. This leaves some regions of the

network edge over-represented while others are left under-represented. We find this is

an artifact of the way in which the 2-hop method gathers information. By contrast, lcv

reveals a reasonable set of boundary nodes. Unlike the 2-hop and tent-rule methods,

lcv is fairly resilient to changes in topology.

Our evaluation is further propelled by the growing number of studies that suggest

error in position estimation is currently unavoidable [96, 105, 120]. We insert position

error to the system by blurring neighbour positions stored at each node. In doing so,
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a pair of neighbouring nodes is unlikely to agree on the relative position of any third

node in common view.

The results are surprising and counter-intuitive: The difference in accuracy be-

tween the lcv in a perfect environment and one with position estimation error are

statistically insignificant. Motivated by this observation we enumerate a complete

base set of node configurations that may be seen by lcv. Our analysis reveals that

lcv is immune to two of these configurations. Further simulations show the frequency

of false-positives and false-negatives imposed by a third, ambiguous, configuration is

low. We conclude that the geometric properties underlying lcv are responsible for its

resilience to error.

In summary, in this chapter we develop the first of two boundary node detection

methods. It uses only nodes in range and resolves any needed information that is

missing. We study our method alongside two methods with similar properties, and in

environments where position estimation is erroneous. Our simulations and analysis

reveal that lcv is resilient to the impediments faced by competing methods, as well

as errors in position estimation.

3.1 Local Convex View

In this section we describe the local convex view (lcv) algorithm, an autonomous

method for selecting a subset of nodes to describe the network edge. Our algorithm

makes only the assumptions that generated or assigned node IDs within each neigh-

bourhood are unique, and that distance measurements are available. We consider a

deployment of a large wireless network where, initially, nodes lack any knowledge of

their positions.
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3.1.1 Local Boundary Node Identification

A set of nodes far apart may be obtained by finding the convex hull 1 of a set

of nodes. There are potential drawbacks to choosing the convex hull of the network:

Too few boundary nodes may be chosen, the shape of irregular networks may fail to

appear and, finally, we know of no methods by which convex hull computations may

be localised.

By contrast we can localise the convex hull computation to capture the ‘shape’

of a sensor network. The idea is illustrated in Figure 3.1 where we compute the local

convex view for each node. A node’s local convex view consists of the set of nodes

that comprise the convex hull of the neighbourhood in view. (Thus there are as many

local convex views in a network as there are network nodes.) Observe in Figure 3.1

on the right that by taking the set of “outside” nodes from the set of local convex

views, the shape of the network structure begins to emerge. We use this observation

to motivate our method for boundary node identification.

In the simplest terms a node decides if it lies on the network boundary by asking

the following question: Am I in my own local convex view? With the return of a

positive answer, a node declares itself to be a boundary node. Referring again to

Figure 3.1 we focus on the nodes labelled u, v, w. Using the local convex view criteria

nodes v and w declare themselves to be boundary nodes while node u sits idle. We

evaluate the accuracy of this criteria in Chapter 3.2 and proceed with a discussion of

the algorithm and its merits.

The complete procedure appears in Algorithm 3.1. For each node u the boundary

node declaration process consists of three steps. Steps 1 and 2 remedy the initial lack

of position awareness. Recall that network nodes may lack any knowledge of their

positions, information that is necessary to compute a convex hull. We obtain this

information by constructing a local coordinate system as this is sufficient to compute

1In two-dimensions, a set S of points is defined as convex if for every x ∈ S and y ∈ S, the
segment xy ⊆ S [97].
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u
v

w

Figure 3.1: (Left) Nodes u, v, w compute their local convex hull; only v and w declare

boundary status. (Right) The shape of the network emerges from the collection of

local convex hulls.

Algorithm 3.1 Boundary Node Identification Algorithm at any node u.

1: Share the distance measurements to single hop neighbours.

2: Set u as the origin of, and construct local coordinate system.

3: Compute the local convex view (lcv).

4: return u ∈ lcv
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u v

w

w

x

Figure 3.2: Neighbourhood coordinate establishment.

the local convex hull.

Each node in the network begins by sharing its 1-hop distance measurements with

its neighbours. Once obtained, each node constructs a local coordinate system by

placing itself at the origin and, in a depth-first manner, places remaining neighbours

relative to those whose local coordinates have been established. Two potential options

are lateration and angulation [53]. We demonstrate this idea from the perspective of

node u in Figure 3.2. Node u places itself at the origin of a Cartesian space and sits

neighbour v on the horizontal axis. (For our purposes we use the furthest neighbour.)

The next node, w, may be placed on either side of the horizontal axis since convex

hull computations are unaffected by rotations and translations. Remaining nodes are

placed similarly and with respect to established coordinates.

In the final step a node computes the convex hull over the neighbourhood in

view. If it sits within its local convex view (ie. in the set of points describing the
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convex hull of the local neighbourhood) then it declares itself to be a boundary node.

We discuss the correctness of this approach in the next section.

3.1.2 Correctness of Local Convex View

We note that it is impossible for a node to declare boundary status unless it sits on

a network boundary. This notion is demonstrated in Figure 3.3 which depicts the

two general cases faced by the lcv algorithm. We can see that node s may border an

unreachable region according to two definitions: Figure 3.3a demonstrates the case in

which we are uninterested since s has neighbours that lay qualitatively closer to the

unreachable region (neighbours of s sit closer to the greyed region than the tangent

at s); by contrast Figure 3.3b demonstrates that, within view, s is closest to the

unreachable region. This implies that false positives may be returned (eg. routing

‘holes’ inside the network), and that false negatives are impossible.

The cost of the algorithm is one transmission to share distance vectors, and

O(d log d) computation where d is the number of nodes in the neighbourhood. The

local convex view avoids broadcasts and inter-node cooperation. It is both protocol

and architecture independent.

To better illustrate the outcome of our method we use the three networks de-

picted in Figure 3.4. Each network consists of 3000 nodes in a 200x200 space each

with a range of 8 units. Figure 3.4a represents a network where node locations are

distributed according to a uniformly random distribution; in Figure 3.4b node loca-

tions are distributed according to a normal distribution; in Figure 3.4c node locations

are distributed according to a skewed (Pareto) distribution. Within each figure we

plot the complete set of network nodes on the left and the subset of nodes that declare

boundary status on the right. Comparing the right and left plots we see the majority

of nodes that declare beacon status lie in the outer regions of the network.

Our continued evaluation appears in Chapter 3.2. Next we construct a simple
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S

(a) The ‘concave’ case.

S

(b) The convex case.

Figure 3.3: A node may abut unreachable regions in two ways. The lcv detects regions

that are outwardly unreachable.
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(b) A normal network.
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(c) A skewed (Pareto) network.

Figure 3.4: Example networks of 3000 nodes with varying topologies on the left. The

corresponding lcv nodes for each network on the right.
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probabilistic model to deal with missing information during coordinate assignment.

3.1.3 Dealing with Incomplete Information

We previously described the way each node assigns coordinates to neighbours. There

remains in this approach a caveat. Say node u constructs its neighbourhood coordi-

nate system according to Algorithm 3.1. Coordinate assignments may only succeed

if u’s neighbourhood is 2-connected 2 . We can also say the removal of u must leave

a single connected component. Without 2-connectedness u will be unable to assign

a coordinate to at least one neighbour. In this section we suggest a probabilistic

solution.

Consider two contiguous neighbours around u sorted in angular order. By

normalising the communication range to 1 and solving the associated cosine rule,

12 = 12 + 12 − cos A, we determine the maximum possible angle between two com-

municating neighbours to be π/3. Using this result we can show that there exists

at most 5 disconnected components (ie. non-communicating neighbours) around u.

Furthermore, a node cannot lie on its local convex view if it has greater than 3 such

components.

In the example shown in Figure 3.5 node u has assigned coordinates to three

neighbours in a connected component. Wishing to assign a coordinate to node v,

node u sees that v communicates with no other neighbour of u and so must lie

somewhere along the dotted arc. If v lies in the ranges described by angle β then u

must sit on its local convex view. Hence, u sits on its lcv with probability

p[u ∈ lcv] =
2β

2β + α
. (3.1.1)

The range of angles of α is equivalent to the range of angles covered by the neighbours

2A 2-connected network is one in which there are 2 disjoint paths between every pair of nodes.
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Π/3

Π/3
β 

β 

α

v

u

Figure 3.5: During coordinate assignment u finds v is disconnected from the remaining

neighbourhood. Node u lies on the lcv only if neighbour v sits in the range denoted

by β.
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with assigned coordinates. So β may be written as

β = π − (α +
π

3
). (3.1.2)

Note that the probability p[u ∈ lcv] = 0 when α ≥ 2π/3. Then, by substituting

Equation 3.1.2 into 3.1.1, node u declares it is on its lcv as follows,

p[u ∈ lcv] =





4π
3
−2α

4π
3
−α

, if α < 2π
3

0, otherwise.

(3.1.3)

We have demonstrated a probabilistic solution for the case where there are two

disconnected components. Next we evaluate lcv against comparatively similar meth-

ods.

3.2 Performance Evaluation

In this section we evaluate lcv with the tent-rule and the 2-hop methods, described in

Chapter 2 and quickly reviewed below. Our comparison is followed with an evaluation

of lcv when position estimation error is inserted into the system.

3.2.1 Comparative Methods

The 2-hop method [101]. Stemming from a need to identify a set of furthest

beacons, the authors inject an anchor into the network. Each node in the network

records and transmits its hop distance to the anchor. Any node that finds itself the

furthest of all its 2-hop neighbours from the anchor becomes a beacon. On account

of the focus of this work being not the beacon selection but an ensuing coordinate

construction, no evaluation of the quality of selection was provided.

Tent-rule [23]. The tent-rule, so named for its appearance when represented

diagrammatically, identifies all unreachable regions as defined by greedy routing. It

works by sorting neighbours angularly about a node. If the bisectors of edges to
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contiguous neighbours intersect outside of range of the node, then the node abuts an

unreachable region. Given that the network boundary itself delineates an unreachable

region, the adaptation of the tent-rule for our investigation is appropriate.

3.2.2 Experimental Design

To evaluate and compare the algorithms, we simulate networks of varying density and

distribution. Network nodes are distributed in a 200x200 unit space, each node with a

fixed range of 8 units. We vary node density by changing the network size. Note that

by changing size instead of communication range we can vary neighbourhood density

without affecting the maximum network diameter. Network sizes are 1500, 2500, and

3500 nodes. (In the uniform networks this results in average neighbourhood sizes of

7, 12, and 17 nodes.) To obtain more accurate results we tabulate and experiment

over the largest connected component of each network. Experiments repeat over 25

runs of each network generated using non-overlapping streams.

Nodes locations are chosen from a normal or skewed (Pareto) distribution in

addition to the uniform distribution traditionally used to generate wireless network

topologies. Uniformly distributed networks may be sufficient to provide insight yet

are poor representations of many real deployments. Normal coordinates are generated

with an average of 100 (the center) and a standard deviation of 40. Skewed coordinates

are chosen from the Pareto distribution with scale parameter 1.0 and shape parameter

100.5. Examples topologies appear in Figure 3.4.

The choice of appropriate metrics is not obvious. We have isolated two metrics

we believe to be suitable for this study. Our measures of success center on locations of

nodes that declare boundary status relative to the network boundary. For this reason

networks are separated into partitions appropriate for each network type, described

in Chapter 3.2.4. Measures of success are represented as follows:

• We measure the edge proximity as the probability that the location X of a
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declared boundary node lies in region x. This measures the likelihood that

nodes sitting on their local convex view are good beacon candidates (ie. sitting

close to the network boundary).

• We measure the regional proportionality as the percentage of nodes within a

region that declare boundary status. This ratio should be highest towards the

true network boundary. It is designed to reinforce those methods that are more

likely to find nodes close to the edge of the network.

Our simulations implement the algorithm described in Chapter 3.1 with one

addition. Nodes that observe a local convex view consisting of three or fewer nodes

return negative boundary status. Our experiments show that this reduces the number

of reporting nodes in dense networks to a manageable level without compromising

results in sparse networks.

3.2.3 Performance in a Perfect Environment

Our evaluation begins with a direct comparison between the performance of lcv,

as well as the tent-rule and the 2-hop methods described above. These methods’

similarities to lcv in properties makes them appropriate for comparison.

Boundary Node Set Size

One of our goals is to identify a reasonable set of boundary nodes: too many nodes

create ambiguity, while too few risk sacrificing resolution. We report the number of

actual reporting nodes as the boundary node set size. The boundary node set size is

largely a subjective measure we use to gain insight into measures that are later used.

We expect and confirm uniformly generated networks to be the least-well per-

forming of the three networks we study. Tables 3.1, 3.2, and 3.3 list the average size of

the largest connected component (lcc), and the average number of nodes that declare
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Table 3.1: No. of boundary nodes returned in Uniform networks with 99% confidence

intervals.

Network Size Method Largest

(Neighbourhood) lcv tent rule 2-hop Conn. Comp.

1500 (7) 264.4 ± 8.9 466.7 ± 8.1 130.3 ± 9.0 1490 ± 7.5

2500 (12) 140.9 ± 5.1 299.3 ± 6.0 103.6 ± 5.6 2499.8 ± 0.4

3500 (17) 100.6 ± 3.4 181.6 ± 5.6 101.4 ± 9.8 3499.9 ± 0.2

Table 3.2: No. of boundary nodes returned in Normal networks with 99% confidence

intervals.

Method Largest

Network Size lcv tent rule 2-hop Conn. Comp.

1500 83.9 ± 5.8 161.0 ± 6.3 63.2 ± 4.4 1406.7 ± 7.7

2500 87.3 ± 4.9 160.1 ± 4.9 68.0 ± 3.8 2433.8 ± 4.9

3500 88.0 ± 4.6 155.4 ± 5.5 69.6 ± 3.9 3450.8 ± 5.3

Table 3.3: No. of boundary nodes returned in Skewed networks with 99% confidence

intervals.

Method Largest

Network Size lcv tent rule 2-hop Conn. Comp.

1500 103.8 ± 7.1 168.8 ± 9.3 78.3 ± 10.2 1359.0 ± 12.9

2500 116.0 ± 5.6 216.7 ± 11.1 114.3 ± 15.4 2382.2 ± 10.9

3500 125.4 ± 6.0 244.1 ± 9.3 135.6 ± 17.4 3403.8 ± 12.3
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boundary status for each network, for all methods. All values appear with their 99%

confidence intervals.

The 2-hop rule consistently returns the smallest number of nodes that declare

boundary status. We believe the underlying causes are that i) the 2-hop method com-

piles global information and that ii) it maintains a record of its 2-hop neighbourhood,

allowing decisions that are better informed. (We will discover this observation to be

untrue in later sections.) Despite the increased knowledge of the 2-hop method, lcv

remains competitive in all but the sparsest of uniform networks. Across all networks

the tent-rule returns 2-3 times greater a number of nodes than the best performing

method. The underlying cause is that the tent-rule is designed to report all routing

holes, including holes that are ‘internal’ to the network.

Comparing the values from Tables 3.1, 3.2, and 3.3, the number of boundary-

status nodes appear to be most greatly affected by density in uniform networks. For

example, in uniform networks the ratio of boundary-to-regular nodes reported by lcv

varies from 1 in 6 in the sparsest networks to 1 in 30 among dense networks. While

there is some variation in non-uniform network numbers, the effects associated with

increases in network size are much less pronounced.

Edge Proximity

The boundary node set size hides the locations of the nodes that report boundary

status. In this section we measure the proximity of reporting nodes to the edge of

the network. The edge proximity, depicted in Figures 3.6,3.7, and 3.8 is tabulated

as the cumulative distribution over partitions of the network. Each type of network

is partitioned in a fashion that is appropriate for its overall shape, according to the

following criteria.

Uniform networks are partitioned into quadrilateral ‘rings’. Each ring is of width

equivalent to 0.25R, where R is the communication range.
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Normal networks are partitioned into rings that are 0.25 standard deviations in

width. The statement “80% of reporting nodes sit outside 2σ” may be inter-

preted as 80% of reporting nodes sit amongst the outermost 5% of network

nodes.

Skewed networks are partitioned into diagonals that span from the y to the x−
axis, 10 units apart. So, for example, nodes that report in the 180 region have

x and y coordinates with a sum greater than 180.

The accuracy of all three methods generally follows similar trends. Among nor-

mal networks depicted in Figures 3.7a-3.7c each method reports a very small likelihood

of edge proximity amongst the furthest 1% of nodes, and quickly converges to much

higher values. As network size increases the curves shift to the left, indicating the

point at which the cumulative distributions converge to 1 occurs further from the

network center. Among the skewed networks in Figures 3.8a- 3.8c the 2-hop method

reports the greatest number of boundary nodes closest to the edge, though all meth-

ods converge on 1 very quickly. As with the normal networks, convergence to 1 shifts

further from the origin (a left shift in the curves) as the network increases in size.

One important note: in normal and skewed networks the network edge physically

occurs further from the origin as the network grows large. Therefore the conclusion

that increases in network size are responsible for the increased accuracy represented

by curves shifting to the left should be avoided.

One observation requires special attention. Notice as uniformly random networks

increase in size from 1500 nodes in Figure 3.6a to 3500 nodes in Figure 3.6c, the

increase of boundary nodes reported by lcv in the outer-most 0.25R increases to twice

that of the 2-hop method. Further investigation reveals that the 2-hop method suffers

from a clustering effect that is due to the way it records hop counts. In a wireless

environment where a node location is recorded as the hop-count from a beacon, many

neighbouring nodes will share the same hop distance. These neighbours may span
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Figure 3.6: (Unform Networks.) Edge proximity distributions reveal the proximity

to the network edge of nodes that declare boundary status.
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Figure 3.7: (Normal Networks.) Edge proximity distributions reveal the proximity to

the network edge of nodes that declare boundary status.
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Figure 3.8: (Skewed Networks.) Edge proximity distributions reveal the proximity to

the network edge of nodes that declare boundary status.
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a region as wide as R units. In higher density networks the 2-hop method will

heavily concentrate some boundary nodes along some portions of the network edge,

while leaving other portions under-represented. This phenomenon is illustrated in

Figure 3.12 which shows the boundary nodes as declared by the 2-hop method in

networks of 3000 nodes. The conclusion to be drawn is that the 2-hop method is

adversely affected by higher density environments.

Regional Proportionality

Edge proximity reveals the position of nodes declaring boundary status relative to

the edge of the network. In this section we seek further insight by evaluating regional

proportionality, the proportion of nodes that declare boundary status within each

partition, as described in Chapter 3.2.4, versus those nodes that claim not to be on

the boundary. We call this the boundary- vs. regular-node ratio.

We plot regional proportionality for each algorithm, for each network, in Fig-

ures 3.9, 3.10, and 3.11. From this view it appears that the tent-rule method pro-

duces the most accurate results, that the 2-hop method produces the least accurate

results, and that lcv lies in between. This interpretation is misleading. It is inap-

propriate to compare the curves against each other. Rather, it is more appropriate

to compare the curves against the network-wide proportion of boundary declaring

nodes. The network-wide proportions may be calculated using the values reported in

Tables 3.1- 3.3.

As an example, we direct our reader to the horizontal plots in Figures 3.9a, 3.10a, 3.11a.

(We have otherwise omitted these curves for clarity, and due to space limitations.)

The horizontal lines represent the network-wide proportion of nodes that declare

boundary status using lcv. This average permits a clearer interpretation of the re-

sults. For example, in Figure 3.9a the network-wide proportion of boundary declaring

nodes by lcv is 0.17. From the same figure we see that the proportion of boundary
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Figure 3.9: (Uniform Networks.) Regional proportionality reveals the proportion of

nodes in each region to declare closeness to the network edge.
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Figure 3.10: (Normal Networks.) Regional proportionality reveals the proportion of

nodes in each region to declare closeness to the network edge.
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Figure 3.11: (Skewed Networks.) Regional proportionality reveals the proportion of

nodes in each region to declare closeness to the network edge.
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declaring nodes in the outer-most 0.25R region using lcv is 0.64. We can conclude

that, using lcv, nodes in the outer-most ring are almost 4 times as likely to identify

with the edge of the network.

Taking this perspective, the reason tent-rule appears to produce more accurate

results is that it yields a higher network-wide average. By taking the network-wide

averages into account we can observe that sparse uniform, and normal networks in

general, are best served by the 2-hop method. In the remaining networks lcv produces

the highest proportion of boundary nodes closer to the network edge.

Summary of Comparison

In summary, the lcv approach performs consistently across all networks tested. The

tent-rule, by design, finds all nodes that abut an unreachable region irrespective of

the region’s location in the network. By contrast the lcv reveals a smaller set of

boundary nodes that describe the network boundary more concisely.

Moreover, the observation that the 2-hop approach produces more accurate re-

sults than lcv is misleading. Figure 3.12 illustrates that the 2-hop method is adversely

affected by network density because the distance to the bootstrap beacon is recorded

in hops. Since many neighbouring nodes record the same hop count, the 2-hop ap-

proach reveals boundary nodes that are closely clustered together. This leaves many

portions of the network edge under-represented. Furthermore, the ability of the 2-hop

method to reveal boundary nodes suffers if the bootstrap beacon is poorly placed [101].

The lcv suffers none of these drawbacks.

3.2.4 lcv and Position Estimation Error

Error is added to the system by blurring the position of nodes from their actual

locations. This blurring occurs from the perspective of each node so that two nodes

may see a common neighbour in two different positions. Before computing the local
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Figure 3.12: The 2-hop method is adversely affected by increased density. Boundary

declaring nodes cluster together leaving many regions of the network edge under-

represented. Example networks are 3000 nodes in size.
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convex view, each coordinate is shifted. We shift coordinates by adding a vector

consisting of an angle chosen from the uniform distribution, and a length chosen

from a parametrized normal distribution. We use the edge proximity and regional

proportionally metrics described in Section 3.2.2 to evaluate the efficacy of the lcv

method in the presence of error.

Edge Proximity under Error

Recall from Chapter 3.2.2 that edge proximity is defined as the probability that the

location X of an lcv-node lies in region x. This gives the likelihood that nodes sitting

on their local convex view also sit close to the network boundary.

Edge proximity plots appear in Figures 3.13, 3.14, and 3.15. Subfigures are or-

ganised such that network size and density changes down each column, while the

underlying network distribution varies across figures. For each network we plot the

edge proximity for varying error values, parametrized by increasing the variance from

0 to 20% of the communication range. Each plot represents the cumulative distribu-

tion over partitions of the network. Networks are partitioned in the manner described

in Section 3.2.3.

With respect to the effect of error on the performance of lcv we find the observa-

tions to be somewhat counter-intuitive. Within each subfigure, each curve represents

a different degree of error. Curves within each subfigure show identical trends with

differences in accuracy that are largely statistically insignificant. (Confidence inter-

vals have been omitted for clarity.) This would indicate that, in all tested networks,

the accuracy of lcv is largely unaffected by error. We reserve a discussion of the causes

for Section 3.3.

We proceed in the next section with an evaluation using a second metric to

confirm our observations.
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Figure 3.13: (Uniform Networks.) Edge proximity distributions reveal the proximity

of lcv-nodes to the network edge. Error ranges from 0−20% of communication range,

r.
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Figure 3.14: (Normal Networks.) Edge proximity distributions reveal the proximity

of lcv-nodes to the network edge. Error ranges from 0−20% of communication range,

r.
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Figure 3.15: Skewed Networks.) Edge proximity distributions reveal the proximity of

lcv-nodes to the network edge. Error ranges from 0 − 20% of communication range,

r.
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Regional Proportionality under Error

We find that, using the edge proximity metric, lcv seems largely unaffected by errors

in position estimation. In this section we seek further insight by evaluating regional

proportionality. Regional proportionality is the proportion of nodes that declare lcv

status within each partition as described in Section 3.2.3, versus those nodes that

claim not to be lcv. We call this the lcv- vs. regular-node ratio.

We plot regional proportionality in Figures 3.16, 3.17, and 3.18. Here, too, sub-

figures are organised such that network size and density changes down each column,

while the underlying network distribution varies across figures. For each network we

plot the edge proximity for varying error values, parametrized by increasing the vari-

ance from 0 to 20% of the communication range. Note the leftward shift of curves

as size increases among normal and skewed networks. Recall from previous that this

is an artifact of the network’s edge shifting further from the origin as the networks

grow.

Within each subfigure we can compare the curves against the network-wide pro-

portion of lcv-nodes, represented by the horizontal line. The network average permits

a clearer interpretation of the results. For example, in Figure 3.16a the network-wide

proportion of lcv-nodes is 0.17. From the same figure we see that the proportion of

lcv-nodes in the outer-most 0.25R region is 0.64 when there is zero error. We can

conclude that, with no error, nodes in the outer-most ring are almost 4 times as likely

to identify with the edge of the network.

The regional proportionality metric seems to reinforce the observation that er-

ror, as tested, has little-to-no effect on the performance of lcv. Similar to the edge

proximity metric in Section 3.2.3, plots within each subfigure show identical trends

with differences in accuracy that are largely statistically insignificant. However, there

are subtle noteworthy observations. We refer our reader first to plots derived from

uniformly generated networks in Figures 3.16a- 3.16c. We can see that error has a
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Figure 3.16: (Uniform Networks.) Regional proportionality reveals the proportion of

nodes in each region to declare edge-node status via lcv. Error ranges from 0− 20%

of communication range, r.
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Figure 3.17: Regional proportionality reveals the proportion of nodes in each region

to declare edge-node status via lcv. Error ranges from 0 − 20% of communication

range, r.
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Figure 3.18: Regional proportionality reveals the proportion of nodes in each region

to declare edge-node status via lcv. Error ranges from 0 − 20% of communication

range, r.
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more pronounced effect on lcv accuracy as the network density increases, but only in

the outer-most region of the network.

We emphasize that the differences in accuracy, statistically speaking, are insignif-

icant - with one exception. A dense uniformly generated and bounded network will

eventually capture the shape enforced by the bounds. In our experiments this shape

is a quadrilateral. It is directly responsible for the loss in accuracy in the outer-most

ring of the network, as density increases. We develop this idea next in Section 3.3.

3.3 On the Resilience of lcv to Error

The previous section revealed little-to-no degradation in the performance of lcv in

the presence of errors. This idea is counter-intuitive, and so we use this section to

enumerate and discuss the scenarios faced by the local convex view method.

In our analysis we assume that the position of only a single node has been incor-

rectly estimated. This relatively benign assumption permits a clear demonstration of

the effects of error on lcv without sacrificing accuracy or completeness. Specifically,

all remaining cases may be composed of the cases presented here.

The three cases under consideration by lcv are presented in Figure 3.19. For

the purpose of demonstration, we consider the lcv operation at node u. In our ex-

ample topologies, neighbours are joined to u with a solid line. The position of some

neighbouring node v determines a dash-dot-dashed line that represents a threshold of

interest. The neighbour in question has a position estimated by the node labelled w,

with a true position that may exist anywhere inside the greyed region. Finally, the

dashed poly-line corresponds to the local convex hull under consideration.

Figures 3.19a and 3.19b depict the two ‘good’ cases where the lcv computation is

unaffected by error. In the first case, shown in Figure 3.19a, node u determines it is

on the local convex view and declares itself close to the network boundary. Note that

the local convex hull consists of the same nodes irrespective of the actual location
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Figure 3.19: In consistent cases lcv is unaffected by position estimation error.
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of w anywhere inside the grey region. The second case shown in Figure 3.19b is of

a similar theme. Node w is estimated to have a location that renders node u inside

its local convex view. In fact, node w may sit anywhere in the grey region without

affecting the local convex view. In both these cases the underlying geometry ensures

the resilience of the local convex view method: the convex hull remains consistent so

long as the error region of w remains entirely to one side or the other of the threshold

determined by (u, v).

Figure 3.19c depicts the ambiguous case. Node w is estimated to have a position

close enough to the threshold that its actual location may exist on either side of the

threshold. In the example shown in Figure 3.19c, a w is estimated to have a position

that renders u on the local convex view of u. If such a w actually sits on the the other

side of the threshold then u has falsely determined that it sits on its local convex view.

The reverse may occur if w is estimated to sit close to, but on the other side of, the

threshold.

The observation in Section 3.2.4 is that lcv seems relatively unaffected by error.

From our analysis we have determined that any adverse effect of error to lcv is caused

by the ambiguous scenario demonstrated in Figure 3.19c. Our hypothesis is that lcv

is relatively unaffected by error because the ambiguous case occurs very infrequently.

To test our hypothesis we evaluate the frequency of false positives and false negatives

when error is added to lcv. For each type of network the results are partitioned as

described in Section 3.2.4 so that we may observe lcv performance in each area of the

network. We plot for all networks the worst tested case in Figure 3.20, where the

variance parameter is equal to 20% of the communication range.

Figure 3.20a reveals that, in uniform networks, the error in the outer-most ring

of the network hovers about 20%. Interestingly, the frequency of false positives and

negatives in this region climbs as density increases. The reason is that increased den-

sities along the network edge more closely approximate the artificial lines artificially

bounding the network. This causes a greater number of w nodes which are the cause
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case, with error variance 20% of communication range.
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of the ambiguity that leads to false positives and negatives. As we move deeper into

the network where no artificial boundaries exist, the frequency of incorrect responses

drops dramatically.

In the outer-most regions of normal and skewed networks, the ambiguous case

appears much less frequently. For example, among the outer-most 5% of nodes in

normal networks, the rate of false lcv responses is approximately 10%. Similarly for

skewed networks. This may be explained by the lack of artificial boundaries in normal

and skewed networks (ie. unlike the uniformly generated networks, these networks

fail to approximate the quadrilateral region that contains them). As we move deeper

into the network the rate of false positives quickly drops in both normal and skewed

networks.

3.4 Chapter Summary

This chapter has presented and compared methods to identify a subset of nodes on

the network boundary (for sensing and localising applications). Its key contribution

is a heuristic algorithm that operates locally. A node decides it is close to the net-

work edge if the node finds that it lies on the convex hull of its 1-hop neighbourhood.

Where position information is unavailable lcv assigns local coordinates to each neigh-

bour so that geometric relationships, and hence the convex hull, may be computed.

Coordinate assignment requires that a node view its neighbourhood as 2-connected,

ie. if a node removes itself then a single connected component remains. We have

determined the maximum possible number of disconnected components to be 5. In

such cases we have shown that it is possible for a node to sit on the local convex

hull only where removal of the node leaves a maximum of 3 components. A simple

probabilistic model was proposed to decide the convex hull of neighbourhoods with

disconnected components.

We simulated lcv, tent-rule, and 2-hop methods in networks of varying density
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constructed from uniform, normal, and skewed (Pareto) distributions. For evaluation

we identified two metrics, edge proximity, and regional proportionality. We found

that the behaviour of all three methods demonstrated similar trends. According to

these metrics the tent-rule was the least well-performing, while the 2-hop method

performed best. However, this conclusion is misleading as the 2-hop method also

reveals boundary nodes that are tightly clustered, while ignoring other boundary

nodes altogether. lcv was found to be resilient to the qualitative drawbacks of the

2-hop approach.

We further examined the ability of the local convex view (lcv) algorithm to

identify network edge nodes in the presence of position estimation error. We engaged

in extensive simulations of networks with topologies of varying size and underlying

distributions. Position errors were chosen from a normal distribution with a variance

up to 20% of the communication range.

Further examination failed to reinforce the assumption that lcv would be ad-

versely affected by position estimation error. To explain the disconnect between

intuition and observation we enumerated and analysed the three base neighbour con-

figurations that may be seen by a node. In two cases position estimation error changes

the shape of the local convex view, but not the nodes that comprise it. In the third

case position error leads to ambiguity, where the true position of a neighbour may

lead to a false insertion or an omission of the node undergoing the lcv computation.

Further simulation revealed the frequency of the ambiguous case to be very low,

about 10% in the worst case for all networks tested. We conclude that the geometric

properties underlying lcv are responsible for its resilience to error.

In the next chapter we transform lcv into a deterministic algorithm that outputs

a descriptive map of the network boundaries.



Chapter 4

A Deterministic and Local

Boundary Detection Algorithm

4.1 Introduction

Context-awareness is increasingly important in wireless and sensor networks. When

available, knowledge of position, nearby physical obstacles, or topological features, can

be exploited to provide better communication protocols and deployment techniques

in resource constrained environments.

Intuitively, many pure sensing applications benefit from knowledge of network

boundaries ([8, 12, 24, 28, 71, 95, 96, 101, 110, 122, 126]). Nodes along the outer edge

of the network, for example, are assumed to be the best candidates for beacons in

virtual coordinate constructions. Here the assumption is that the finest resolution in

coordinates appear using a set of beacons that are furthest apart. Perceived network

edges also may bound holes in the network or other regions of interest. Such regions

may indicate physical boundaries or node failures due to environmental effects, so that

additional nodes may be deployed. In addition, there are applications that benefit

directly. KAT [92], whose success relies in part on accurate knowledge of network

85
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boundaries, is one such example.

In this paper we solve the edge detection problem locally using a geometric

structure called the alpha-shape (α-shape) [20]. The α-shape is used to capture the

shape of a set of points in space, and is a generalisation of the convex hull. In addition

to geometry-related fields of study such as graphics and computational geometry, α-

shapes have been used in molecular biology and particle physics [21]. Alpha-shapes

offer real world applicability. They may be weighted to reflect degrees of accuracy

relative to network positioning [19], and also extended to three-dimensions [21].

Its use is motivated by the hypothesis that within range of many nodes there

exists structural information relevant to the network. For a disc of radius 1/α, the

α-shape consists of nodes (and joining edges) that sit on the boundary of the discs

that contain no other nodes in the network. For this initial study we restrict ourselves

to network graphs with normalised communication range in two-dimensions.

Our contribution, rather than to suggest a new method, is to identify wireless

network boundaries by combining previously unrelated methods. It differs from pre-

vious methods in that we investigate what might be achieved if relative information -

positions of nodes relative to their neighbours - was known or computable. First, each

node constructs a local coordinate system. (Alpha-shape computations are unaffected

by translations and rotations in space.) Next, each node computes the Delaunay tri-

angulation of its neighbourhood to find the corresponding α-shape. In the simplest

terms a node decides it is on a network boundary by asking the following question:

“Do I sit on the boundary of a disc of radius 1/α that contains no other nodes in

the network?” Finally, any boundary node may request a map of the boundary by

transmitting a discovery packet along edges of the α-shape using right-hand rule.

The key to localisation is to select the α-parameter appropriately. In the version

of the problem faced in this paper it is appropriate to select α so that 1/α = 1/2R,

where R is the normalised communication range. Given such an α, the α-shape

derived from local computations is provably correct. Even so, the alpha-shape may
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expose some unwanted detail. This may be resolved by using either of two refinement

methods.

We show via simulation that our algorithm identifies meaningful boundaries even

in low-density networks. In addition to varying density, we vary topology by gener-

ating networks where node locations are selected from uniform, normal, and skewed

(Pareto) distributions. We complete our evaluation with a comparison of local α-

shaping over dædal topologies presented in [119]. We find that α-shaping produces

similarly favourable results with fewer communications and fewer neighbours.

4.2 Preliminaries

Our work exploits the properties of many well known geometric structures. In ad-

vance of the presentation of the edge detection algorithm we present some necessary

definitions and background for completeness.

4.2.1 Definitions

Delaunay Triangulation. Given a set of points S the Delaunay triangulation DTS

is one that satisfies the ‘empty circle’ property, where no point lies inside the circum-

circle of any triangle in DTS. An example of a Delaunay triangulation appears in

Figure 4.1a. It is a super set of the convex hull as well as the minimum spanning

tree of S. The number of edges in the Delaunay triangulation is on the order of the

number of nodes (ie. |E| = O(|V |) for edge set E and node set V ). Of its many

properties we are most interested to its relationship to Voronoi Diagrams.

Voronoi Diagrams. Given a set of points S the Voronoi diagram V DS parti-

tions the space occupied by S into convex regions V (p) where, for each p in S, any

point in V (p) is closer to p than any other point in S. The Voronoi diagram is the

dual graph of the Delaunay triangulation. The Delaunay triangulation may be used
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(a) Delaunay Triangulation

(b) Voronoi Diagram

Figure 4.1: The Delaunay triangulation of a set of points and its corresponding

Voronoi diagram.
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to compute the corresponding Voronoi diagram in linear time. Referring to Figure 4.1

we can see both the Delaunay triangulation and the Voronoi diagram for the same

set of points.

4.2.2 α-Shapes

The α-shape provides the foundation of the work in this paper. It is derived from the

α-hull, which is a generalisation of the convex hull. To better understand α-shapes

we restate the following definitions from the original work in [20] in a manner that

better suits our application, and follow with a discussion using examples. Say that

we have a set S of points in the plane.

Definition 4.2.1 The α-hull is defined as the intersection of the complement of all

closed discs of radius 1/α that contain no points in S.

We are more interested in a related structure called the α-shape which first requires

the following definition.

Definition 4.2.2 A point p in S is said to be α-extreme if p lies on the boundary of

a closed disc of radius 1/α that contains no other points of S. Two such points p and

q that lie on boundary of the same disc are said to be α-neighbours.

Finally, we may define α-shapes as follows.

Definition 4.2.3 For a set S of points in the plane and α ≥ 0, the α-shape is

the graph whose vertices are α-extreme and whose straight line edges connect α-

neighbours.

Note that as α approaches zero the size of the disc approximates a half-plane. At

α = 0 the α-hull is identical to the convex hull.

The contrast between structures may be seen in Figure 4.2. The convex hull

of an example set of points appears in Figure 4.2a. Certainly the convex hull of a
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(a) Convex Hull.

(b) α-shape.

Figure 4.2: The convex and α-shapes of a corresponding set of points.



4.3. Localised Boundary Detection Algorithm 91

wireless network is one way to define its boundary; unfortunately the convex hull fails

to reflect numerous features. Observe, for example, that the curve along the upper-

rightmost edge is hidden, as is the large circular gap that appears in the lower-left.

Furthermore edges of the convex hull, restricted by range constraints inherent among

wireless devices, may be impossible to compute.

Using the same set of nodes we compare the α-shape shown in Figure 4.2b.

For demonstration the discs used to produce the α-shape appear using greyed lines.

Observe that the revealed shape more accurately reflects the shape of the network

(for proper selections of α). The α-shape closely follows variations in the outer-edge.

It also reveals the inner gaps. We note that the α-shape can reveals inner as well as

outer boundaries, a characteristic missing from the convex hull.

The structures discussed above are well-known, well-studied, and have been ex-

tended to 3-dimensions. The algorithm presented in the next section uses these

structures to a provide boundary detection localised for wireless and sensor networks.

4.3 Localised Boundary Detection Algorithm

We consider a deployment of a large sensor network where, initially, nodes may lack

any knowledge of their positions. We wish to identify, using only local information,

those nodes and links that lie on the network boundaries. We propose a localised

algorithm that makes only two assumptions. First, that generated or assigned node

IDs are unique within each neighbourhood; second, that distance measurements are

available should position information be unknown.

Our method relies on the hypothesis that within the local view of each node

there exists some structural information relevant to the network. As discussed in

Section 4.2.2, it is well known that α-shapes, given a proper selection of the α-

parameter, reveals a set of nodes and edges that captures the shape of a set of points

in a geometric space. We first outline our algorithm and then discuss each step in
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detail. The correctness of the algorithm is reserved for discussion to Section 4.4.

1. (Optional) Each node i constructs a local coordinate system consisting of the

nodes L(i) within communication range. Only relative positions are required

for the algorithm to succeed. This step is necessary only if position information

is unknown.

2. Each node i for its neighbourhood L(i), constructs the Delaunay triangulation

DTL(i).

3. Given communication range R, select the α-parameter so that the radius r of

the disc is r = 1
2
R. Identify ‘α-extreme nodes’ of L(i) as determined by r. Each

node ascertains its boundary status by asking, “Am I α-extreme?”

4. (Optional) A map of the boundary may be obtained by sending a discovery

packets according to right-hand rule along the edges joining α-neighbours.

4.3.1 Establish a Local Coordinate System

In the first step each node constructs a local coordinate system so that the αL-shape

may be computed in the next steps. Though not the focus of this work, we present this

step for completeness. It is described for cases where no a priori position information

exist. Should position information be available, this step becomes redundant and

may be omitted.

Each node in the network, after announcing its presence, begins by sharing with

its immediate neighbours a vector of measured distances to 1-hop neighbours. Once

received, each node constructs a local coordinate system by placing itself at the origin

and, in a depth-first manner, assigns coordinates to remaining neighbours relative to

those whose local coordinates have been established. We demonstrate this idea from

the perspective of node u in Figure 4.3. Node u places itself at the origin of a
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u v

w

w

x

Figure 4.3: Node u may generate a local coordinate system, if needed.

Cartesian space and sits neighbour v on the horizontal axis. (For our purposes we

use the furthest neighbour.) The next node, w, may be placed on either side of the

horizontal axis since α-shape computations are resilient to rotations and translations.

Remaining nodes are placed similarly and with respect to established coordinates.

Clearly this approach is independent of under- and over-lying protocols. Still,

its weakness is its dependence on accurate measurement methods. The viewpoint we

take is that location-discovery technologies such as [72, 112] or GPS will continue to

decrease in size and cost, rendering this argument moot.

Once nodes have discovered their positions relative to their neighbours, each node

proceeds to construct the Delaunay triangulation consisting of the nodes in view.

4.3.2 Local Construction of the Delaunay Triangulation

Construction of the α-shape of a set of points in the plane begins with the construc-

tion of their Delaunay triangulation. The communication range restricts us to the

unit Delaunay triangulation, where edges longer than the communication range are

omitted. Localised constructions of the unit Delaunay triangulation are known not

to exist (see [4, 37, 80]). Despite this fact we show in Section 4.4.1 that it suffices for

our purposes to build only the Delaunay triangulation of the local neighbourhood.
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4.3.3 Boundary Recognition using Local α-shapes

In Step 3 each node i independently determines whether it sits on a network boundary

by computing its αL(i)-shape, the α-shape of its neighbourhood L(i). Recall from

Section 4.2.2 the definitions of α-extreme. From the Delaunay triangulation DTL(i)

each node i finds the α-extreme points in linear time as follows:

a) Node p ∈ L(i) lies on the convex hull of L(i); this is the trivial case where node

p is α-extreme.

b) Node p ∈ L(i) is not on the convex hull of L(i); we consider the discs (ie.

circumcircles) as defined by the Delaunay triangulation of L(i). Recall from

Section 4.2.1 that the points q which define the convex region Vp enclosing p

in the Voronoi diagram, are the centres of the circumcircles touching p in the

Delaunay triangulation. Thus any p is α-extreme if r ≤ dist(p, q) for any q ∈ Vp.

(Edges between α-neighbours are similarly identified.)

Finally, each node asks of itself if it is α-extreme. No node may declare any other

node as α-extreme. This restriction avoids many of the pitfalls that plague other

localised methods such as [60]. We show in Section 4.4 that this decision constraint,

in addition to our selection of α, is necessary for correctness.

4.3.4 Mapping the Network Boundaries

We emphasise that, following Step 3, the ‘network’ has identified all of its boundaries.

Collectively, the information stored at alpha-extreme nodes constitutes the α-shape

of the network for 1/α = r. Still, it may be advantageous to map the network

boundaries. The α-shape, as a subgraph of the Delaunay triangulation, is a planar

graph. This fact permits nodes to map network boundaries by routing a discovery

packet along edges joining α-neighbours using the right-hand rule : Upon receipt of a

discovery packet, an α-extreme node forwards along the next edge in angular order.
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The combination of right-hand rule over a planar network graph guarantees the

return of a discovery packet to its origin node. In the next section we show that the

local α-shape algorithm is correct for certain selections of α.

4.4 Algorithm Correctness

In this section we demonstrate the correctness of the local alpha-shape algorithm. We

show that when communication range is normalised, local computation is sufficient

and reveals the same nodes and edges as if computation was centralised.

4.4.1 Local Delaunay Triangulations Suffice

The α-shape of a set of points S may be found using their Delaunay triangulation

DT (S) and corresponding Voronoi diagram V D(S). We show by example that, if the

communication range is normalised, the events outside of communication range bear

no affect on the correctness of local α-shape computations.

We direct our reader to the example in Figure 4.4, which depicts a ‘before and

after’ scenario of a neighbourhood from the perspective of sensor node p. The large

circle represents p’s communication range; the greyed disc is the disc used to find α-

extreme nodes and edges; the straight lines represent Voronoi diagrams. The Voronoi

diagram computed by p is shown in Figure 4.4a. The intersection x is the center of

the circumcircle of prs and reveals that p is α-extreme. We then add a node t just

beyond p’s view in Figure 4.4b and show how the Voronoi diagram would change if t

was visible to p. Note that x is no closer to p, so p remains alpha-extreme. Similar

examples may be constructed for any t outside of communication range.

The key to this observation is the bisector property of the Voronoi diagram

where any line or point between nodes p and q sits on the line that bisects the space

between the points. Next we show that it is possible to ascertain the alpha-shape of
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(a)

(b)

Figure 4.4: (a) Local information is sufficient to find α-extreme nodes. (b) Point x

in the Voronoi diagram can be no closer to p despite node t outside of range.
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the network, despite only local information and computation.

4.4.2 On the Proper Selection of Alpha

Generally speaking, the value of an α-shape rests in the selection of the α-parameter.

Edge detection is no different. We ask when, if ever, a locally constructed α-shape

might be identical to an α-shape that is constructed in a centralised fashion. For a

set of points S in the plane, let α(S) be the set of nodes and edges collected from the

centralised α-shape algorithm; similarly we label the set of nodes and edges collected

from local operations as described in Section 4.3 as αl(S).

Theorem 4.4.1 The sets αl(S) and α(S) are identical sets.

Proof. It suffices to consider only the edges in a set since, if any node differs, there

must be an edge that differs as well. If we assume that the two sets differ then either

or both of the following statements must be true:

a. An edge in α(S) fails to appear in αl(S).

b. An edge fails to appear in α(S) that appears in αl(S).

We show both statements to be false. The key is in the selection of α which, in the

unit disc graph, is selected so that the radius of the disc r = 1/2. When finding the

global α-shape and setting α so that r = 1/2, only Voronoi neighbours (or their dual,

Delaunay edges) whose distance is ≤ 1 may be inserted into α(S). We can satisfy

this restriction by searching UDel(S), the Delaunay triangulation with edges greater

than 1 unit removed. So, in α(S) we have no edge greater than 1 and only edges

whose endpoints sit on an empty circumcircle with r = 1/2.

The reverse statement presents a greater challenge since there is no way to con-

struct UDel(S) locally [4, 37, 80]. Instead we can effectively find all edges that join

α-neighbours. Observe in Step 3 of our algorithm that any edge e can only be in-

serted in αl(S) by endpoints of e. We label the endpoints u and v. Node u has a
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complete view of its neighbourhood. This is sufficient information to find incident

circumcircles since its radius is set so that its diameter matches the communication

range. It is important to note that only incident circumcircles are inserted into αl(S):

Node u is prohibited from making decisions on behalf of v or any other node in its

neighbourhood. This idea is demonstrated in Figure 4.5 in which node u can only

insert edges that it knows belong in αl(S). Finally, the argument is symmetric in

that if u inserts uv then v inserts vu.

Finally, we note that the localised α-hull algorithm is resilient to non-uniform

range so long as r = 1
2
Rmin, where Rmin is the minimum possible communication

range for all nodes. Accurate boundaries emerge so long as Rmin is sufficiently large

to reflect a disc that is able to connect α-neighbours according to Definition 4.2.2.

4.5 Refinement

The selection of disc radius r = 1/2R for communication range R guarantees correct-

ness. Our initial investigation shows that this selection of disc radius exposes some

unwanted detail, necessitating further refinement.

We present example misleading geometries in Figure 4.6. The quadrilaterals’

edges represent communicating nodes and boundaries as determined by local α-

shaping. The greyed discs used to establish the local α-shape have been included

for clarity. We can see that sets of nodes located in close proximity may produce

boundaries where, effectively, there is none. Unrefined, the local α-shaping process

produces boundaries such as those seen in Figure 4.8. We provide two methods to

further refine the α-shape should the default be too fine-grained.
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Figure 4.5: Node u may insert in αl(S) only directed incident edges uv and uy.

4.5.1 Increasing the Disc Radius

The first method we investigate is to increase the radius of the disc in Step 3. The

outcome is a shape that is more coarse. Under these circumstances the relationship

between the α-shapes generated in a local and in a centralised fashion is unclear. The

question remains open whether setting r > 1/2R, ie. setting the disc diameter strictly

greater than communication range, connects local α-edges in a planar configuration

amenable to a right-hand-rule mapping.

Increasing the available information to multi-hop neighbourhoods fails to resolve

the issue at question. This idea is demonstrated using Figure 4.7. Referring first to

Figure 4.7a, we present a configuration where the disc diameter is increased beyond

the communication range R. Node v is out of the communication range of node u

but, unbeknownst to u, inside the disc of radius r. This means that he the segment

of the α-shape that would appear if computed centrally, shown in Figure 4.7b, fails
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Figure 4.6: Nodes in close proximity may expose unwanted detail.

to appear when computed locally.

Hence, by increasing the disc radius an alpha-node can successfully determine

whether it is located on the boundary; it is unclear if increasing the disc diameter

beyond the communication range allows a boundary node to correctly communicate

with all other nodes on the same boundary or how the local and global α-shapes

might differ. In the following section we present a more effective refinement method.

4.5.2 Refinement by Omission

Alternatively, network boundaries may be further refined following Step 4 by disre-

garding those boundaries found to be greater than some pre-determined number of

hops in length. Our measurements show that in all but the sparsest networks tested,

the length of most boundaries was found to be quite small, measuring 10 or fewer

hops. This observation is reinforced by previous study( [25]).

Ultimately it is the need to identify boundary nodes versus edges that dictates



4.5. Refinement 101

v

u

r

R

(a) Local α-shape.
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(b) Actual α-shape.

Figure 4.7: By setting r > 1
2
R, the local α-shape may differ from the actual α-shape

of the network.
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the refinement method. We present simulations in the next section to compare both

methods, and evaluate the local α-shaping process in general.

4.6 Simulation Results

In the previous section we presented a complete algorithm to identify network bound-

aries without the need for broadcasting. Here we use a broad set of simulations to

evaluate the algorithm performance with respect to density and distribution. We

begin with a description of the networks tested.

4.6.1 Experimental Design

To evaluate the performance of the local α-shaping we simulate networks of varying

density, distribution, and topology. Network nodes are distributed in a 200x200 unit

space, each node with a fixed range of 8 units. We vary node density by changing

the network size. Note that by changing size instead of communication range we can

vary the density without affecting the maximum network diameter. Network sizes

are 3500, 2500, and 1500 nodes. (In the uniform networks this results in average

neighbourhood sizes of 1̃7, 12, and 7 nodes.) To obtain results unbiased by isolated

nodes we tabulate and experiment over the largest connected component of each

network as described by Table 4.1.

Nodes locations are chosen from a normal or skewed (Pareto) distribution in

addition to the uniform distribution traditionally used to generate wireless network

topologies. Uniformly distributed networks may be sufficient to provide insight yet

are poor representations of many real deployments. Normal coordinates are generated

with an average of 100 (the center) and a standard deviation of 40. Skewed coordinates

are chosen from the Pareto distribution with scale parameter 1.0 and shape parameter

100.5.
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Table 4.1: Largest connected components in tested networks with 99% confidence

intervals.

Initial Size of lcc

Network Size Uniform Normal Skewed

3500 3499.9 ± 0.2 3450.8 ± 5.3 3403.8 ± 12.3

2500 2499.8 ± 0.4 2433.8 ± 4.9 2382.2 ± 10.9

1500 1490.0 ± 7.5 1406.7 ± 7.7 1359.0 ± 12.9

4.6.2 Refinement Phases Compared

We begin our evaluations by comparing local alpha-shaping with and without the

refinement phases proposed in Section 4.5. The outcome of the unaltered localised

α-shape algorithm is presented in Figure 4.8. Small ‘empty’ pockets appear in the

densest networks, growing in number and size in the sparse networks. The less than

satisfactory results in Figures 4.8b and 4.8c stem from the selected value of the α

parameter. Recall that the localised algorithm reveals the same boundaries as the

global algorithm so long as the disc diameter is restricted to the communication range.

Despite this fact we explore the effect of an increase in α in the first refinement

method.

The first attempt at refinement appears in Figure 4.9 using the same networks

as in Figure 4.8. In these networks the α parameter has been increased by 10%

so that r = 1.10 ∗ 1
2
r. Few pockets appear in the denser networks shown in Fig-

ures 4.9a and 4.9b; unfortunately, the improvement in the sparse network of 1500

nodes shown in Figure 4.9c, while apparent, is marginal at best. Also, as discussed in

Section 4.5.1, there is no guarantee that planar edges are found when the disc diame-

ter is increased beyond communication range. Routing and mapping, then, becomes

a challenge. Still, this approach provides the benefit of remaining entirely local to

each node, needing no added communication.
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In Figure 4.10 we show the boundaries revealed by omitting long paths as dis-

cussed in Section 4.5.2. Using this approach, nodes forward a discovery packet to

their α-neighbours according to right-hand rule. In our simulations, packets that re-

turn to their origin having travelled less than 15 hops are omitted from contention.

The improvement is clear. In all but the sparsest network, our algorithm reveals a

single network boundary. And in the sparse network shown in Figure 4.10c only the

largest empty regions remain.

α-neighbours cooperate to omit unlikely boundaries and produce the most ac-

curate results. The communication required is far less than is required for global

broadcasts in comparable methods. We apply this refinement in remaining simula-

tions.

4.6.3 Distribution and Density of Sensors

In this set of simulations we alter the distribution of nodes in addition to the network

density. Distribution parameters are described in Section 4.6.1. Normally distributed

sensor nodes, intended to better approximate aerial deployments, are shown in Fig-

ure 4.11; skewed sensor distributions, intended to better approximate ground projec-

tile deployment, are shown in Figure 4.12. In all non-uniform simulations presented,

α-shapes are shown refined using the mapping method described in Section 4.5.2.

The α-shaping method performs well in all tested networks and, but for increasingly

jagged boundaries, seems relatively unaffected by density.

4.6.4 Additional Examples

Finally, we test local α-shaping using example networks featured in [119]. In that

study the authors produced favourable results using topological means needing many

network-wide communications. Neighbourhoods in their study ranged from 18 to 22

nodes in size. Our method produced only slightly improved boundaries, and can be
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(a) 3500 nodes. (b) 2500 nodes. (c) 1500 nodes.

Figure 4.8: Unrefined boundaries determined using local α-shapes; network sizes

reflect average neighbourhood sizes of 17, 12, and 7, respectively.

(a) 3500 nodes. (b) 2500 nodes. (c) 1500 nodes.

Figure 4.9: Disc radius increased by 10%; network sizes reflect average neighbourhood

sizes of 17, 12, and 7, respectively.

(a) 3500 nodes. (b) 2500 nodes. (c) 1500 nodes.

Figure 4.10: Boundaries are mapped and omitted if greater than 15 hops; network

sizes reflect average neighbourhood sizes of 17, 12, and 7, respectively.
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(a) 3500 nodes.

(b) 2500 nodes.

(c) 1500 nodes.

Figure 4.11: Results over networks with nodes distributed according to a normal

distribution.
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(a) 3500 nodes.

(b) 2500 nodes.

(c) 1500 nodes.

Figure 4.12: Results over networks with nodes distributed according to a skewed

(Pareto) distribution.
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seen in Figure 4.13. However, we emphasise that local α-hull yields slightly more

accurate results using far fewer communications and neighbourhoods ranging from 7

to 10 nodes. This is less than half of the size of neighbourhoods in [23].

4.7 Chapter Summary

In this paper we have developed an algorithm to identify nodes and links along net-

work boundaries. It is useful to place our work within the context of previous methods.

Edge detection algorithms and protocols have demonstrated considerable poten-

tial in the past. Such methods offer the benefit of relaxing the unit disc model, and

needing no position information a priori. However, the success of previous methods

has relied on the global cooperation of all sensor nodes in the network. The level of

cooperation often requires packets to record information revealed over multiple broad-

casts. This may be an unacceptable drain in such an energy constrained environment

where channel contention and collision is at issue. Besides this fact a bootstrap node

is sometimes assumed to exist, generally at the center or at the edge of the network.

The origin of these nodes is unclear. This is restrictive behaviour: many networks,

such as those quickly deployed in an emergency, may be unable to tolerate delays in

network setup or proper placement of bootstrap nodes.

In contrast we assume that partial location information is available or obtain-

able. Specifically we investigate what might be achieved if relative information -

positions of nodes relative to their neighbours - was known or computable. From this

standpoint we can investigate geometric options from which we might otherwise be

restricted. In this paper we have managed to detect network boundaries by provably

localising the α-shape algorithm; the centralised version of which has been successful

in capturing the shape of a set of points in many disciplines. The key is to set α so

that the disc in use has a diameter equal to the communication range. Then each

node may independently decide if it sits on the α-shape of the network and find the
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(a) (b)

(c) (d)

(e)

Figure 4.13: Dædal examples featured in [119]. They include (a) a building floor plan

with 3420 nodes and average degree of 8; (b) a cubicle shaped office space with 6833

nodes and average degree of 7; (c) a happy face with 4050 nodes and average degree

8; (d) a network with 3443 nodes and average degree of 8; (e) a spiral shape with

5040 nodes and average degree of 10.
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correct incident edges. By using our algorithm and selected α the collection of lo-

cally computed nodes and edges provably matches the set of nodes and edges of the

α-shape computed centrally.

To validate our approach we tested the local α-shape algorithm in simulated net-

works of varying density where nodes were distributed according to uniform, normal,

and skewed distributions. We found the algorithm output could be further refined if

nodes mapped their boundaries by forwarding a discovery packet according to right-

hand-rule; boundaries exceeding some length could be omitted from consideration.

Compared to results from previous studies the local α-shape algorithm performs

favourably. Presently, we are looking at statistical methods to resolve inaccuracies

associated with position estimation error.



Chapter 5

Guaranteed Geographic Routing

with Intersections

5.1 Introduction

The construction of network subgraphs appropriate for position-based (or geographic)

routing protocols has, to date, remained a complex problem. These subgraphs are

needed to recover from the local minima problem (see [15]) that prevents delivery

and plagues position-based protocols. Network subgraphs constructed for recovery

using only 1-hop information risk inaccuracies that cause routing failures([60, 107]).

If permitted to cooperate, nodes may construct a network subgraph that remedies

any inaccuracies([59, 107]). Yet the energy needed to power many rounds of com-

munication risks being prohibitive in such a resource-constrained environment. The

ideal wireless network subgraph would guarantee successful delivery while a) needing

only 1-hop information and b) be able to acquire such information passively.

Traditionally, position-based routing protocols construct subgraphs (herein re-

ferred to as just ‘graph’) from available links in somewhat of a bottom-up fashion.

Generally the idea is to extract a specific type of graph. During the setup of the

111
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graph each node evaluates potential links to find those that preserve some global

properties. Planar graphs([30]) and k-spanners([106]) are two such examples. The

analogous question would be to ask, “what is the minimum set of edges that must be

preserved to guarantee so-and-so feature in the graph?”

Our work is motivated by the opposite question, “What is the minimum set of

edges that must be deleted while still providing guarantees?” Without sacrificing the

scalability and success of position-based routing, the goal of this work is to disturb

the network as little as possible. To this end it is necessary to understand the causes

for a position-based routing protocol to fail to recover from local minima and deal

with those causes, directly. We believe the work in this chapter is the first work in

that direction.

In this chapter we investigate routing according to left- or right-hand rule (LHR).

Using LHR, a node upon receipt of a message will forward to the neighbour that sits

next in counter-clockwise order in the network graph. (Alternatively, clockwise order

if using right-hand rule.) When used to recover from greedy routing failures, LHR

guarantees success if implemented over planar graphs; for this reason it is often called

‘face-routing’. We note, however, that if planarity is violated then LHR is only

guaranteed to eventually return to the point of origin. Our work seeks to understand

and correct the underlying causes.

We have chosen LHR for three reasons. First, it is most prevalent in position-

based routing literature and hence well-studied. Second, it is a simple rule. Finally,

the ideal network graph remains elusive. To re-iterate, we envision the ideal graph

as overcoming the inaccuracies that lead to routing failures; as one that results from

knowledge of the 1-hop neighbourhood; as one where each node transmits a constant

number of messages.

We begin by with a provable enumeration of the possible types of intersections

in a unit-disc graph, within which any two nodes are neighbours if separated by a

maximum distance of one unit. We show that only three types of intersections are
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possible and that in only one of these configurations does LHR fail to recover.

5.2 Links that Prohibit Routing Success

In the previous section we noted that routing according to right- or left-hand rule

(LHR), alone, fails to provide a guarantee of success. Though this fact is well known,

the reasons and circumstances under which delivery may fail are poorly understood.

In this section we seek to investigate the limits imposed by intersections on face-based

recovery.

Our goal is to maximise the number of active edges in a wireless network graph

while providing routing guarantees using LHR. In an attempt to relax planarity,

currently required to guarantee the success of a traversal between two nodes, we

must identify the causes for failure in an arbitrary graph. We focus this work on the

unit disc graph (UDG), where all communication ranges are normalised. The UDG

is appropriate since it limits potential routing options yet still poses a challenge to

LHR routing. Our investigation begins with an enumeration of all of the types of

intersections that may appear in the UDG.

5.2.1 An Enumeration of Intersection Types

Consider any two intersecting edges. We provide the edges ac and bd in Figure 5.1 for

reference. The nodes a, b, c, d at the end points of these edges form a 4-gon (shown

in Figure 5.1 using dashed lines). The question we ask is, which of the edges of the

4-gon may or may not be communicating links in the unit-disc graph? In order for

at least one such edge to exist, we need to show that all four sides cannot be greater

than both diagonals.

Using cosine rule we know,

(ac)2 = (ad)2 + (dc)2 − 2(ad)(dc) cos D. (5.2.1)



5.2. Links that Prohibit Routing Success 114

d
D

a

b

c

Figure 5.1: Intersecting links between two pairs of nodes may impose any or all edges

in a 4-gon.

If |ac| is less than or equal to 1, then

(ad)2 + (dc)2 − (ad)(dc) cos D ≤ 1. (5.2.2)

When D ≥ π
2
, then cos D ≤ 0. In this case, (ad)2 + (dc)2 ≤ 1, which means (ad) ≤ 1

and (ad) ≤ 1. Thus, if an angle of the 4gon is right or obtuse, then both incident

edges must exist in the UDG. (By contrast, incident edges when D < π
2

may or may

not exist.)

This implies and restricts the possible configurations that allow intersections to

three, all shown in Figure 5.2. The two cases where the nodes of intersecting edges

produce a 4-gon with two obtuse angles is shown in Figures 5.2aand 5.2b, while

the 4-gon containing a single obtuse angle is shown in Figure 5.2c. (Note that it

is impossible for a 4-gon to be constructed with three obtuse edges; and that edges

incident to an acute angle may or may not appear in the unit-disc graph.)
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Figure 5.2: Possible 4-gons when edges ac and bd intersect in the UDG with dashed

lines indicating edges that may or may not appear.

5.2.2 The Prohibitive Link

A trace over each configuration reveals that LHR routing recovers from all but one

configuation. The ‘bad’ configuration occurs during a traversal of the intersection in

Figure 5.2c where there are three acute angles and when only the edges of the 4-gon

incident to the obtuse angle appear. This represents the case where network node a

communicates with b, c, d, and b with d; node c communicates only with a. We call

this case the umbrella configuration for its appearance, as shown in Figure 5.3.

Referring to Figure 5.3 there are two ways in which LHR may fail. The first is

demonstrated by the dashed-dot-dash line originating at node d. (Entry at nodes a

and b are analogous.) A traversal using left- or right-hand rule will never traverse

edge ac while travelling through this intersection. Supposing c must be traversed in

order to reach the destination, LHR will fail. The second possible failure occurs when

a LHR traversal encounters the umbrella intersection first via node c in Figure 5.3

using the dashed line. LHR traverses the inside of the triangle4abd and exits without

ever seeing edges that protrude from the outside of the triangle. As before, any such

edges leading to the destination may be overlooked by an LHR traversal.

The cause of both failures lies in the relationship between 4abd and ac in Fig-
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Figure 5.3: The ‘bad’ umbrella configuration prevents the success of LHR two ways.

b
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d

Figure 5.4: Removing prohibitive link bd allows LHR to traverse all edges.
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ure 5.3: There exists an edge from the triangle that is accessible only from inside the

triangle. In other words, a traversal around the inside or the outside of the triangle

fails to encounter all edges leading to the triangle. Both failures are solved by re-

moving any of the edges that form the triangle. The easiest of these to identify and

remove from the network graph is the edge of the triangle that forms the intersection

in the umbrella configuration. We call this the prohibitive link.

We revisit this subject and build a networking protocol in the next section. Before

closing this section the outcome following a removal of the prohibitive link from the

umbrella configuration is demonstrated in Figure 5.4. The configuration that was an

intersection is reduced to a planar set of edges easily navigated by left- or right-hand

rule.

5.3 Prohibitive-link Detection and Routing Proto-

col (PDRP)

We have enumerated all possible intersections in the unit-disc graph and identified

the type of intersection with the link that prohibits successful delivery when routing

according to right- or left-hand rule. In this section we present a prohibitive-link

detection and routing protocol (PDRP) and show its correctness.

5.3.1 PDRP Overview

Most wireless protocols construct network graphs to guarantee delivery. The goal

of PDRP is to remove from the network graph as few links as needed to guarantee

routing. To better describe PDRP we assume a static graph where each node is

assigned a coordinate in a 2-dimensional Euclidean system. We assume that the

graph is connected and that all links are bi-directional. PDRP functions adequately

in a mobile space provided that changes in position occur over a greater time-frame
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than is required to re-evaluate local prohibitive links and transmit local updates. In

this work communication range is fixed and uniform across all nodes; a relaxation of

this requirement is the subject of future work.

b

a

c

d
e

(a) Before detection phase.

b

a

c

d
e

omit b

om
it 

b

omit d,e

(b) Following detection phase links db and eb

omitted.

Figure 5.5: Local neighbourhood from viewpoint of node c, before and after the PDRP

detection phase.

PDRP consists of two phases, detection and routing. The routing component op-

erates similarly to the routing component in many established position-based routing

protocols: PDRP routing consists of a greedy phase and a recovery phase. During

normal operation nodes route in a greedy fashion and forward messages to the neigh-

bour that most reduces the distance to the destination. Where no such neighbour

exists a message is deemed ‘stuck’ in a local minima and is forwarded according to

left- (or right-)hand rule. (The node initially selected is the first to appear left, or

right, of the line segment from the current location to the destination.) The first node

found that sits closer to the destination than the ‘stuck’ location returns to the greedy
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forwarding phase. The correctness of PDRP and its ability to guarantee delivery to

the destination is discussed in Section 5.3.2.

During the PDRP detection phase each node inspects its neighbourhood. Us-

ing reported neighbour positions each node evaluates intersections within range and

flags any three neighbours that compose an umbrella configuration, as described in

Section 5.2.2. Once sufficient information is compiled a node sends a notification

packet to the neighbours that anchor prohibitive links. Within this packet are a list

of prohibitive links to be avoided during the recovery phase.

The detection phase is demonstrated in Figure 5.5. In Figure 5.5a node a de-

termines that two intersections in its vicinity contain prohibitive links, those links

being bd and eb. Nodes b, d, and e have no knowledge of node c’s existence. The re-

sponsibility falls on node a to inform neighbours of their prohibitive links. Moving to

Figure 5.5b node a instructs each of d and e to ignore their links to b during recovery;

similarly node a instructs b to omit links to d and e.

By definition, the number of messages required to ‘destruct’ the network graph

are fewer in number than current efforts such as the mutual witness protocol in GPSR.

Alternatively notifications may be avoided entirely by either i) passing and evaluating

over 2-hop neighbourhoods or ii) compactly embedding (in a fixed space) prohibitive

links within recovery packets. We intend to solve this in the future by use of Bloom

filters to compress prohibitive link information into recovery packets. In the next

section we prove that PDRP functions correctly.

5.3.2 Statement of Correctness

Having identified removed prohibitive links in umbrella configurations, we show in

this section that PDRP will successfully route a message between two nodes if a path

exists. We remind our reader that during the routing phase of PDRP, any standard

position-based routing technique consisting of greedy + face-routing recovery may be
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implemented.

The following argument progresses first by defining the graph embedding so that

we might state our claim. We then show correctness by tracing a face-routing traversal

within intersections of the embedding defined.

Definition 5.3.1 Let G be an embedding of a graph. We define Gunu = UDG(G) ∩
NUmI(G), where UDG(G) is the unit-disc graph over G and NUmI(G) is the sub-

graph of G where umbrella intersections are removed.

Proposition 5.3.2 We claim that in Gunu a traversal, T , consisting of left-hand rule

with memory, will find and traverse a unique face.

Proof. We prove by induction on the neighbourhoods witnessed by T . Consider

the first neighbourhood, k0, visible to starting node v. If no intersection is visible to

v then the next edge in T is trivial. If, however, an intersection exists in k0 then it

must be in the form depicted in either of Figures 5.6a or 5.6b (see Section 5.2.1 for

proof).

o

pm

n

d

(a)

r

q t

s

d

(b)

Figure 5.6: Once prohibitive links are omitted, two possible contentious configurations

remain.

Case 1. Consider the intersection in Figure 5.6a. For any v ∈ {m,n, o, p} and des-

tination d, if vd intersects with no local edges (ie. vd does not pass through
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quadrilateral (mnop)) then the next left edge - and thus first edge in the cur-

rent face - is trivial. If, however, vd does pass through (mnop) as shown in

Figure 5.6a then there are two cases:

v = n The starting vertex is situated in the quadrilateral such that a single vertex

sits left of
−→
vd and two vertices sit on the right. In Figure 5.6a this case is

represented by v = n. Node n forwards to m. Both mo and mp intersect

with nd, the line segment from the destination to the point where T started,

so T will escape this neighbourhood when m chooses the next ccw edge

from −→mp.

v = o The starting vertex is situated in the quadrilateral such that a single vertex

sits right of
−→
vd and two vertices sit on the left. In Figure 5.6a this case is

represented by v = o. Here, too, o forwards to m and m chooses the next

ccw edge from mp.

In either case, the face of interest begins at vertex m where a cycle, if traversed,

will be declared.

Case 2. Consider the intersection in Figure 5.6b. Let starting node be v ∈ q, r, s, t

and destination d sit such that rd intersects qs and sd intersects rt. The trivial

case is v = q. Three cases remain:

v = r The starting vertex is situated in the quadrilateral such that a single ver-

tex sits left of
−→
vd and two vertices sit on the right. In Figure 5.6b this

case is represented by v = r. r forwards to q where T will escape the

neighbourhood. (Recall that when T intersects with vd, T switches faces.)

In this case the cycle will be detected at r.

v = s The starting vertex is situated in the quadrilateral such that a single ver-

tex sits right of
−→
vd and two vertices sit on the left. In Figure 5.6b this

case is represented by v = s. s forwards along sq where T escapes the
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neighbourhood. On its return, T will detect a cycle at s since node t will

avoid the edge sq since it was traversed previously.

v = t The starting vertex is situated in the quadrilateral such that all three

vertices sit left of
−→
vd. In Figure 5.6b this case is represented by v = t.

Here, T traverses tr, rq before its escape from q. (Note that qs is not a

valid edge since it intersects the edge previously traversed, tr. T will detect

this cycle at node t.

Assume now that for any neighbourhood, ki, traversal T exits on the same face

on which it enters. We show that for neighbourhood ki+1 traversal T exits on the

same unique face on which it enters.

Referring once more to Figure 5.6, there are two types of neighbourhoods to

consider. Those intersections whose endpoints join into a quadrilateral such as in

Figure 5.6a require little consideration. For any entry point m, n, o, p on the quadri-

lateral, T will exit on the outside of this neighbourhood.

Similarly in Figure 5.6b, traversals entering on {q, r, s} are trivial. We focus on

traversals of T that reach node t. From t the next ccw edges in T are {tr, rq} since

qs intersects tr. From q, T is forwarded along the next ccw edge.

Corollary 5.3.3 For any Gunu, a traversal, T , consisting of left-hand rule with mem-

ory, guarantees a path will be found provided a path exists, or complete the face if no

path exists.

Proof.We know that for a set of unique faces (ie. no intersections) in an em-

bedding, that a left-hand traversal from source to destination is guaranteed to find a

path provided one exists. Thus T , which finds sets of unique (non-intersecting) faces

will find a path if it exists, or complete the face where no path exists.
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Finally, we note that traversal T requires no memory to succeed. A trace with

no memory through all examples reveals that T will escape from any intersecting

neighbourhood via the same egress links, albeit by traversing a few extra links.

PDRP overcomes drawbacks of existing methods. We show in the next section

that an implementation of PDRP is also competitive with these methods.

5.4 Simulation Results

The previous section describes the PDRP protocol and asserts its correctness. We

demonstrate the practical performance of PDRP via simulation in the sections that

follow.

5.4.1 Experimental Design

We have implemented PDRP into the CLDP suite of position-based routing proto-

cols [58] available for TinyOS [46, 116]. TinyOS is an event-driven operating system

deployed on many commercial sensor networking products. Code written for TinyOS

may be executed directly within TOSSIM [78], a simulator designed for debugging

and evaluation of protocols before installation to sensor devices. The CLDP suite is a

natural fit: In addition to CLDP it implements GPSR and face-routing with a variety

of options; its implementation helps to ready PDRP for testing and improvement in

real-world environments.

In our evaluation we compare PDRP versus CLDP and GPSR-MW. Recall from

Section 2.3.1 that GPSR constructs a planar graph from available links. CLDP

achieves planarity by destructing the network graph by probing links to identify and

remove intersections. Likewise, PDRP destructs the network graph yet requires no

probing and seeks to minimally disturb the graph.
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GPSR simulations use the Gabriel Graph option for planarization. GPSR design

and accomplishments serve as the foundation on which much more complex efforts

have been built; it has long been considered the baseline for benchmark performance.

In our simulations we use GPSR-MW which includes the mutual witness (MW) pro-

tocol for additional robustness. CLDP was developed much more recently to avoid

the pitfalls that occur when the unit-disc graph assumptions are violated in real-world

networks. PDRP, GPSR, and CLDP are similar in construction and operation yet

differ in their design goals. A comparison in performance between these protocols is

most appropriate.

Simulations are composed of 200 nodes placed uniformly at random within a

square two-dimensional space. The communication range for all nodes is fixed at

180 units. Node density varies as we scale the network space by 100 units in the

range from 1300 to 2000 units squared. Each simulation tests protocols over 50 runs

using the same 50 topologies generated from non-overlapping random streams. This

is sufficient to guarantee a 95% confidence interval. Our two primary performance

measures are success rate and average path stretch. We additionally investigate the

messaging overhead during setup. Each measure is defined and discussed within their

relevant sections below.

5.4.2 Routing Setup and Success

The success rate is measured as the fraction of messages that are correctly transmitted

between each pair of source-destination nodes. Figure 5.7 shows the success rate

of each protocol as a function of network density described by average number of

neighbours.

All protocols perform well though consistency appears to be highest among

PDRP simulations. Note that our simulation results of CLDP differ slightly from

results reported in [59]. In addition both CLDP and PDRP fall short of the expected
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Figure 5.7: Routing Success.

100% delivery rate that is predicted by their proofs of correctness. This is attributable

to two phenomena. The first is collinearity. Left uncorrected, collinear links have the

potential to confuse left- or right-hand rule in a manner that removes routing guar-

antees. In Figure 5.7 collinearity is directly responsible for the dip that occurs in the

GPSR-MW plot at 1̃0.5 neighbours, as well as at 6̃ neighbours in GPSR-MW and

CLDP.

Referring again to Figure 5.7, PDRP seems less affected by collinear links. Fur-

ther investigation reveals this to be an unexpected side-effect of the design goal under-

lying PDRP: to preserve the original network graph in a manner that allows delivery

using position-based routing. In preserving as many links as possible PDRP main-

tains links that are omitted from the GPSR and CLDP network subgraphs. Hence

there appears fewer collinear links since a greater number of links are seen by left- or

right-hand rule in angular order in the PDRP subgraph.
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Figure 5.8: The number of messages exchanged during setup.

The second reason we see a slightly less than 100% success rate is in the TinyOS

implementation. There appears to be slight bugs about which we are in contact with

the authors of the position-based routing suite for TinyOS.

An additional evaluation appears in Figure 5.8 which shows the number of mes-

sages that are exchanged during the setup phase of both PDRP and GPSR with the

mutual witness protocol. (CLDP data has been omitted since the number of messages

exchanged is many times higher than PDRP and GPSR.) In the current implemen-

tation both protocols search for relevant network features upon receipt of each new

‘HELLO’ message. Updates are sent whenever there is a change in the local topology

that affects routing. While there is room for optimisation, we can see that the mes-

saging complexity of PDRP is on the order of GPSR-MW. In the future we intend to

reduce this complexity further by compactly embedding prohibitive link information

in the packet headers.



5.4. Simulation Results 127

5.4.3 Routing Quality

We measure routing quality using path stretch factor. The stretch factor describes

the ratio between the number of hops in the shortest path and the number of hops

traversed using the routing scheme in question. The cumulative distribution functions

generated by stretch factors appear in Figure 5.9. Subplots show the cdf as revealed

over networks of increasing density. We emphasize to our reader the differences in

scale (over the y-axes) between plots so that appropriate levels of detail may be viewed

for each set of simulations.

The difference in performance between GPSR, CLDP, and PDRP in the sparsest

networks, shown in Figures 5.9a and 5.9b, is near indistinguishable. The reduced

likelihood of intersecting links that occurs with sparse networks means that all three

protocols are more likely to choose the same path. Furthermore node sparsity reduces

the number of potentially good routing choices so each protocol is more likely to route

along the shortest path. Referring now to Figures 5.9e through 5.9h we can make

two observations. The first observation is that routing quality amongst all three

protocols continues to to behave in a manner that is (statistically) indistinguishable.

Second, we can see a clear degradation in path quality that is directly attributed to

the increase in frequency of intersections and their potential to separate the routing

path from the shortest path during recovery modes.

There does appear, however, a gap of particular interest that separates PDRP

from GPSR and CLDP. It is visible in Figure 5.9d which depicts the cdf of path

stretch factor where the number of neighbours per node is approximately 7. Further

investigation reveals that the improved routing quality provided by PDRP stems from

its propensity to leave intersecting links intact during the recovery phase: PDRP often

routes along direct links between neighbours whereas the GPSR-family of protocols

will route along multiple links between the same neighbours. Why this separation is

much more clear when neighbourhoods are approximately 7 nodes in number rather
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Figure 5.9: Edge proximity distributions reveal the proximity to the network edge of

nodes that declare boundary status.
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than the more dense or sparse nodes remains an open question and requires further

investigation.

5.5 Chapter Summary

In this chapter we have explored an new approach to graph construction for successful

forwarding in position-based routing. It is instructive to compare this approach with

previous work.

Like the face-routing family of protocols, the success of PDRP relies upon a

recovery phase that implements a form of left-hand rule. Traditionally, the success

of face-routing schemes relies on the assumption that the underlying graph is planar.

The planar graph was chosen because, using left-hand rule, a path to the destination

will always be found (if a path exists). This is restrictive; local constructions of planar

graphs risk inaccuracies, while co-operative (or global) constructions are resource

intensive. In either case there has yet to appear an examination of the challenges

that face left-hand rule in the presence of intersections.

By contrast, the approach taken in this work was to enumerate the configurations

that form an intersection in the network graph. We then scrutinised each with a left-

hand rule traversal so as to isolate the ‘bad’ configurations from which left-hand rule

is unable to recover. In doing so we recognised the existence of a prohibitive link

that has the potential to conceal other viable links from a left-hand rule traversal.

We then presented PDRP, a protocol that detects and avoids the prohibitive link to

successfully deliver packets. It operates locally and, unlike planarization methods,

omits only nonessential links.

Our simulation results demonstrate that PDRP performance is similar to, and

in some cases out-performs, current face-routing schemes. Compared against CLDP

and GPSR with the mutual witness protocol, the success rate of PDRP appeared

more consistent across networks of varying density. The availability of additional
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edges to left-hand rule during the recovery phase allowed PDRP to avoid the trends

common to both GPSR and CLDP. Moreover, in all cases the stretch factor of paths

generated by PDRP was competitive with both GPSR and CLDP. In networks where

neighbouring nodes averaged 7, PDRP shows noticeable improvement over GPSR and

CLDP; the underlying cause requires further analysis.

We have implemented PDRP into the geographic routing suite for TinyOS and

are pleased to make it available upon request. In the future we hope to remove

the unit-disc assumption. Then, using the approach presented in this chapter we

expect to augment PDRP for general case networks where communication error and

non-uniform range is commonplace.



Chapter 6

Conclusion

6.1 Thesis Summary

In this thesis we have adapted and designed simple geometric constructs for the

boundary detection and routing problems in large wireless networks. We have shown

that analyses of the geometric properties of the underlying network graphs may lead

to solutions that are better tailored to their applications: we have presented local

convex view, a locally generated alpha-hull, and a position-based routing scheme

whose goal is to preserve available links with low communication complexity.

The local convex view (lcv) is a heuristic algorithm that operates locally. A node

decides it is close to the network edge if the node finds that it lies on the convex hull

of its 1-hop neighbourhood. We found that necessary information may be unavailable

unless a neighbourhood is 2-connected. An analysis of the possible geometries in such

cases allowed us to propose a simple probabilistic model to decide the convex hull

of such neighbourhoods. lcv performance was found to be consistent with competing

methods and resilient to their qualitative drawbacks. Moreover, simulations failed to

reinforce the assumption that lcv would be adversely affected by position estimation

error. Further examination of local geometries revealed three possible neighbourhood
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configurations caused by position estimation error. lcv was shown to be immune to

two of them.

We then approach boundary detection by provably localising the α-shape algo-

rithm; the centralised version of which has been successful in capturing the shape of a

set of points in many disciplines. The key is to set α so that the disc in use has a diam-

eter equal to the communication range. Then each node may independently decide if

it sits on the α-shape of the network and find the correct incident edges. By using our

algorithm and selected α the collection of locally computed nodes and edges provably

matches the set of nodes and edges of the α-shape computed centrally. Compared to

results from previous studies the local α-shape algorithm performs favourably. This

is due, in part, to the use of partial location information.

Finally we presented the Prohibitive-link Detection and Routing Protocol, PDRP,

a guaranteed routing algorithm that follows the same principles as current face-routing

schemes. It operates locally and, unlike planarisation methods, omits only prohibitive

rather than nonessential links. The approach taken in this work was to enumerate

the configurations that form an intersection in the network graph. In doing so we

recognised the existence of a prohibitive link that has the potential to conceal other

links from a left-hand rule traversal. We implemented PDRP in TinyOS; in TOSSIM

simulations PDRP performance was found to be similar to, and in some cases better

than, current face-routing schemes.

6.2 Conclusive Remarks

From our research, we make the following remarks:

• Error and inconsistency is known to generally affect geometries negatively. De-

spite this trend, there appears to be certain structures that can be designed to

be resilient to such errors.



6.3. Future Work 133

• It is possible to construct (at least one) global structure using only local com-

munication and computation.

• Planarity of the network graph is not a requirement for successful delivery using

left- (or right-)hand rule.

We conclude this document with some notes on future directions.

6.3 Future Work

Wireless sensor networks provide an ample new set of networking problems with

unique geometric properties. A thorough understanding of these properties, as exem-

plified in the design of lcv, localised α-hulls, and PDRP, permits the design of better

solutions.

In the future this work will take five directions. We intend first to investigate the

performance of the localised α-hull in the presence of position-estimation error, and

explore statistical and optimisation techniques to resolve the expected degradation. In

addition we hope to adapt α-hulls for boundary detection in 3-dimensional networks

such as those underwater.

By design, PDRP demands either that nodes must communicate to omit pro-

hibitive links, or embed those links in recovery packets. The former case increases the

messaging complexity, yet the latter increases packet size. We hope to encode pro-

hibitive links into the packet using Bloom filters, thereby providing a version of PDRP

that reduces resources while providing routing guarantees with high probability.

The enumeration of intersections studied in this document is in the context of

unit-disc graphs. We intend to study intersections in general graphs with no such

constraint. LHR has so far eluded delivery guarantees in general networks. We hope

our approach helps to break this trend. Finally, we expect that other routing protocols

may be improved by a better understanding of the challenges they face. We hope
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to continue to remove obstacles faced, rather than design protocols to overcome the

obstacles as they are encountered.
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Appendix

A-1 Confidence Intervals

Simulated measures throughout this work such as success rate, path stretch, and prob-

ability distributions, etc, are calculated by taking the mean values over a succession

of n runs of simulated networks. All runs are identical and independent, with ran-

dom values generated from non-overlapping streams. We represent simulation runs

by R1, R2, R3, . . . , Rn. The mean value R in question is determined by,

R =
1

n

n∑
i=1

Ri (A-1)

Since the summation R is only an estimate of the expected value E[R] = µ, we

need to determine the accuracy of R by calculating its confidence interval. We first

compute the variance, V 2
R, by

V 2
R =

1

n− 1

n∑
i=1

(Ri −R)2 (A-2)

A small variance indicates a tight clustering of measurements around the simu-

lated value R. This corresponds to an increase in confidence that R is close to E[R].

Conversely, a large variance indicates a wider spread of measured values, reducing the

confidence that R is indicative of E[R]. The degree of confidence is determined by

calculating the interval of values in which the true E[R] is contained, and expressing

the interval as a proportion of the measured value.

Confidence is determined first by selecting some high probability 1− α for some

small α. Then the interval of lower and upper values for µ, LR and UR respectively,
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may be expressed by the probability

P [LR ≤ µ ≤ UR] = 1− α (A-3)

In other words, the true value of µ is contained in the interval P [LR ≤ µ ≤ UR] with

a probability of 1− α. This is said to be the 100(1− α) confidence interval.

For example, the 95% confidence interval for a set of observations may be de-

termined using the standard distribution and the student’s t-distribution table as

follows. For

α = 0.05

n = number of observations

R = average of sample observations

σ = sample standard deviation

=
√

V 2
R

=

√√√√ 1

n− 1

n∑
i=1

(Ri −R)2

the lower and upper values in the confidence interval have been calculated as,

lower limit: LR = R− σt(1−α
2

,n−1)√
2

, and (A-4)

upper limit: UR = R +
σt(1−α

2
,n−1)√
2

(A-5)

The observations in preceding chapters are 50 in number and fall from a true dis-

tribution that has two tails. Hence, from the t-distribution table, the two-tail value

t0.05,49 is found to be 2.010. All measurements in this work are presented using 95%

or better confidence intervals.


